94 research outputs found

    Cleaning the Cellular Factory:Deletion of McrA in Aspergillus oryzae NSAR1 and the generation of a novel kojic acid deficient strain for cleaner heterologous production of secondary metabolites

    Get PDF
    The use of filamentous fungi as cellular factories, where natural product pathways can be refactored and expressed in a host strain, continues to aid the field of natural product discovery. Much work has been done to develop host strains which are genetically tractable, and for which there are multiple selectable markers and controllable expression systems. To fully exploit these strains, it is beneficial to understand their natural metabolic capabilities, as such knowledge can rule out host metabolites from analysis of transgenic lines and highlight any potential interplay between endogenous and exogenous pathways. Additionally, once identified, the deletion of secondary metabolite pathways from host strains can simplify the detection and purification of heterologous compounds. To this end, secondary metabolite production in Aspergillus oryzae strain NSAR1 has been investigated via the deletion of the newly discovered negative regulator of secondary metabolism, mcrA (multicluster regulator A). In all ascomycetes previously studied mcrA deletion led to an increase in secondary metabolite production. Surprisingly, the only detectable phenotypic change in NSAR1 was a doubling in the yields of kojic acid, with no novel secondary metabolites produced. This supports the previous claim that secondary metabolite production has been repressed in A. oryzae and demonstrates that such repression is not McrA-mediated. Strain NSAR1 was then modified by employing CRISPR-Cas9 technology to disrupt the production of kojic acid, generating the novel strain NSARΔK, which combines the various beneficial traits of NSAR1 with a uniquely clean secondary metabolite background

    Taking Blockchain Seriously

    Get PDF
    In the present techno-political moment it is clear that ignoring or dismissing the hype surrounding blockchain is unwise, and certainly for regulatory authorities and governments who must keep a grip on the technology and those promoting it, in order to ensure democratic accountability and regulatory legitimacy within the blockchain ecosystem and beyond. Blockchain is telling (and showing) us something very important about the evolution of capital and neoliberal economic reason, and the likely impact in the near future on forms and patterns of work, social organization, and, crucially, on communities and individuals who lack influence over the technologies and data that increasingly shape and control their lives. In this short essay I introduce some of the problems in the regulation of blockchain and offer counter-narratives aimed at cutting through the hype fuelling the ascendency of this most contemporary of technologies

    The challenges for new academics in adopting student-centred approaches to teaching

    Get PDF
    The current article provides a perspective on the day-to-day challenges that a group of new teachers experienced as they adopted more student-centred approaches to teaching. Three semi-structured interviews were conducted over two years with 11 new teachers from a range of higher education institutions and subject disciplines. The analysis used case studies, alongside a search for common themes, to provide fine-grained insights into the teachers' development. A main finding was that in using approaches that more actively involved the students, the teachers described challenges specific to their local contexts. In particular, the idiosyncrasy of the topic being taught was a key factor. The second finding was that regardless of the conception of teaching held, all teachers described challenges in translating this way of thinking into practice. Such data provides a useful resource for academic developers to open dialogue with new academics about the challenges they face in developing as teachers

    Predicting Cognitive Decline in Nondemented Elders Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration

    Get PDF
    BACKGROUND AND OBJECTIVES: Dementia is a growing socio-economic challenge that requires early intervention. Identifying biomarkers that reliably predict clinical progression early in the disease process would better aid selection of individuals for future trial participation. Here we compared the ability of baseline, single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities (WMH), cerebral microbleeds (CMB), whole-brain volume, and hippocampal volume) to predict decline in cognitively normal individuals who later converted to mild cognitive impairment (MCI) (CNtoMCI), and those with MCI who later converted to an Alzheimer's disease (AD) diagnosis (MCItoAD). METHODS: Standardised baseline biomarker data from ADNI2/Go, and longitudinal diagnostic data (including ADNI3), were used. Cox regression models assessed biomarkers in relation to time to change in clinical diagnosis using all follow-up timepoints available. Models were fit for biomarkers univariately, and together in a multivariable model. Hazard Ratios (HR) were compared to evaluate biomarkers. Analyses were performed separately in CNtoMCI and MCItoAD groups. RESULTS: For CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual model: HR 1.79, p = .002; fully-adjusted model: HR 1.98, p = .003), and lower hippocampal volume (individual: HR 0.54, p = .001; fully-adjusted: HR 0.40, p < .001) were associated with conversion to MCI individually and independently. For MCItoAD (n = 345), lower hippocampal (individual model: HR 0.45, p < .001; fully-adjusted model: HR 0.55, p < .001) and whole-brain volume (individual: HR 0.31, p < .001; fully-adjusted: HR 0.48, p = .02), increased CSF ptau (individual: HR 1.88, p < .001; fully-adjusted: HR 1.61, p < .001), and lower CSF amyloid (individual: HR 0.37, p < .001, fully-adjusted: HR 0.62, p = .008) were most strongly associated with conversion to AD individually and independently. DISCUSSION: Lower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers were predictive of conversion to AD from MCI, while WMH were predictive of conversion to MCI from cognitively normal. The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathological pathway, such as vascular cognitive impairment

    Astrobiological Considerations for the Selection of the Geological Filters on the ExoMars PanCam Instrument

    Get PDF
    The Panoramic Camera (PanCam) instrument will provide visible–near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected “geological” filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm (“F1-12”) and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra (“F2-12”). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets

    Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes

    Get PDF
    Quality traits such as flavour and texture are assuming a greater importance in crop breeding programmes. This study takes advantage of potato germplasm differentiated in tuber flavour and texture traits. A recently developed 44 000-element potato microarray was used to identify tuber gene expression profiles that correspond to differences in tuber flavour and texture as well as carotenoid content and dormancy characteristics. Gene expression was compared in two Solanum tuberosum group Phureja cultivars and two S. tuberosum group Tuberosum cultivars; 309 genes were significantly and consistently up-regulated in Phureja, whereas 555 genes were down-regulated. Approximately 46% of the genes in these lists can be identified from their annotation and amongst these are candidates that may underpin the Phureja/Tuberosum trait differences. For example, a clear difference in the cooked tuber volatile profile is the higher level of the sesquiterpene α-copaene in Phureja compared with Tuberosum. A sesquiterpene synthase gene was identified as being more highly expressed in Phureja tubers and its corresponding full-length cDNA was demonstrated to encode α-copaene synthase. Other potential ‘flavour genes’, identified from their differential expression profiles, include those encoding branched-chain amino acid aminotransferase and a ribonuclease suggesting a mechanism for 5′-ribonucleotide formation in potato tubers on cooking. Major differences in the expression levels of genes involved in cell wall biosynthesis (and potentially texture) were also identified, including genes encoding pectin acetylesterase, xyloglucan endotransglycosylase and pectin methylesterase. Other gene expression differences that may impact tuber carotenoid content and tuber life-cycle phenotypes are discussed

    Predicting Cognitive Decline in Older Adults Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration

    Get PDF
    BACKGROUND AND OBJECTIVES: Dementia is a growing socioeconomic challenge that requires early intervention. Identifying biomarkers that reliably predict clinical progression early in the disease process would better aid selection of individuals for future trial participation. Here, we compared the ability of baseline, single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities (WMH), cerebral microbleeds, whole-brain volume, and hippocampal volume) to predict decline in cognitively normal individuals who later converted to mild cognitive impairment (MCI) (CNtoMCI) and those with MCI who later converted to an Alzheimer disease (AD) diagnosis (MCItoAD). METHODS: Standardized baseline biomarker data from AD Neuroimaging Initiative 2 (ADNI2)/GO and longitudinal diagnostic data (including ADNI3) were used. Cox regression models assessed biomarkers in relation to time to change in clinical diagnosis using all follow-up time points available. Models were fit for biomarkers univariately and together in a multivariable model. Hazard ratios (HRs) were compared to evaluate biomarkers. Analyses were performed separately in CNtoMCI and MCItoAD groups. RESULTS: For CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual model: HR 1.79, p = 0.002; fully adjusted model: HR 1.98, p = 0.003) and lower hippocampal volume (individual: HR 0.54, p = 0.001; fully adjusted: HR 0.40, p < 0.001) were associated with conversion to MCI individually and independently. For MCItoAD (n = 345), lower hippocampal (individual model: HR 0.45, p < 0.001; fully adjusted model: HR 0.55, p < 0.001) and whole-brain volume (individual: HR 0.31, p < 0.001; fully adjusted: HR 0.48, p = 0.02), increased CSF ptau (individual: HR 1.88, p < 0.001; fully adjusted: HR 1.61, p < 0.001), and lower CSF amyloid (individual: HR 0.37, p < 0.001; fully adjusted: HR 0.62, p = 0.008) were most strongly associated with conversion to AD individually and independently. DISCUSSION: Lower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers were predictive of conversion to AD from MCI, whereas WMH were predictive of conversion to MCI from cognitively normal. The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathologic pathway, such as vascular cognitive impairment

    Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    Get PDF
    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 1034 cm–2s–1 and collect ~ 3000fb–1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented

    Intraspecific Diversity Regulates Fungal Productivity and Respiration

    Get PDF
    Individuals and not just species are key components of biodiversity, yet the relationship between intraspecific diversity and ecosystem functioning in microbial systems remains largely untested. This limits our ability to understand and predict the effects of altered genetic diversity in regulating key ecosystem processes and functions. Here, we use a model fungal system to test the hypothesis that intraspecific genotypic richness of Paxillus obscurosporus stimulates biomass and CO2 efflux, but that this is dependent on nitrogen supply. Using controlled experimental microcosms, we show that populations containing several genotypes (maximum 8) of the fungus had greater productivity and produced significantly more CO2 than those with fewer genotypes. Moreover, intraspecific diversity had a much stronger effect than a four-fold manipulation of the carbon:nitrogen ratio of the growth medium. The effects of intraspecific diversity were underpinned by strong roles of individuals, but overall intraspecific diversity increased the propensity of populations to over-yield, indicating that both complementarity and selection effects can operate within species. Our data demonstrate the importance of intraspecific diversity over a range of nitrogen concentrations, and the need to consider fine scale phylogenetic information of microbial communities in understanding their contribution to ecosystem processes

    A population-based study of head injury, cognitive function and pathological markers.

    Get PDF
    OBJECTIVE: To assess associations between head injury (HI) with loss of consciousness (LOC), ageing and markers of later-life cerebral pathology; and to explore whether those effects may help explain subtle cognitive deficits in dementia-free individuals. METHODS: Participants (n = 502, age = 69-71) from the 1946 British Birth Cohort underwent cognitive testing (subtests of Preclinical Alzheimer Cognitive Composite), 18 F-florbetapir Aβ-PET and MR imaging. Measures include Aβ-PET status, brain, hippocampal and white matter hyperintensity (WMH) volumes, normal appearing white matter (NAWM) microstructure, Alzheimer's disease (AD)-related cortical thickness, and serum neurofilament light chain (NFL). LOC HI metrics include HI occurring: (i) >15 years prior to the scan (ii) anytime up to age 71. RESULTS: Compared to those with no evidence of an LOC HI, only those reporting an LOC HI>15 years prior (16%, n = 80) performed worse on cognitive tests at age 69-71, taking into account premorbid cognition, particularly on the digit-symbol substitution test (DSST). Smaller brain volume (BV) and adverse NAWM microstructural integrity explained 30% and 16% of the relationship between HI and DSST, respectively. We found no evidence that LOC HI was associated with Aβ load, hippocampal volume, WMH volume, AD-related cortical thickness or NFL (all p > 0.01). INTERPRETATION: Having a LOC HI aged 50's and younger was linked with lower later-life cognitive function at age ~70 than expected. This may reflect a damaging but small impact of HI; explained in part by smaller BV and different microstructure pathways but not via pathology related to AD (amyloid, hippocampal volume, AD cortical thickness) or ongoing neurodegeneration (serum NFL)
    corecore