e834

RESEARCH ARTICLE OPEN ACCESS

Predicting Cognitive Decline in Older Adults

Using Baseline Metrics of AD Pathologies,

Cerebrovascular Disease, and Neurodegeneration

Lloyd Prosser, BSc, MSc, Amy Macdougall, PhD, Carole H. Sudre, Emily N. Manning, PhD, lan B. Malone,
Phoebe Walsh, PhD, Olivia Goodkin, PhD, Hugh Pemberton, PhD, Frederik Barkhof, MD, PhD,

Geert Jan Biessels, MD, PhD, David M. Cash, and Josephine Barnes, for the Alzheimer’s Disease
Neuroimaging Initiative

Neurolagy® 2023;100:e834-845. do0i:10.1212/WNL.0000000000201572

Abstract

Background and Objectives

Dementia is a growing socioeconomic challenge that requires early intervention. Identifying
biomarkers that reliably predict clinical progression early in the disease process would better aid
selection of individuals for future trial participation. Here, we compared the ability of baseline,
single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities
(WMH), cerebral microbleeds, whole-brain volume, and hippocampal volume) to predict
decline in cognitively normal individuals who later converted to mild cognitive impairment
(MCI) (CNtoMCI) and those with MCI who later converted to an Alzheimer disease (AD)
diagnosis (MCItoAD).

Methods

Standardized baseline biomarker data from AD Neuroimaging Initiative 2 (ADNI2)/GO and
longitudinal diagnostic data (including ADNI3) were used. Cox regression models assessed
biomarkers in relation to time to change in clinical diagnosis using all follow-up time points
available. Models were fit for biomarkers univariately and together in a multivariable model.
Hazard ratios (HRs) were compared to evaluate biomarkers. Analyses were performed sepa-
rately in CNtoMCI and MCItoAD groups.

Results

For CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual
model: HR 1.79, p = 0.002; fully adjusted model: HR 1.98, p = 0.003) and lower hippocampal
volume (individual: HR 0.54, p = 0.001; fully adjusted: HR 0.40, p < 0.001) were associated
with conversion to MCI individually and independently. For MCItoAD (n = 345), lower
hippocampal (individual model: HR 0.45, p < 0.001; fully adjusted model: HR 0.55, p < 0.001)
and whole-brain volume (individual: HR 0.31, p < 0.001; fully adjusted: HR 0.48, p = 0.02),
increased CSF ptau (individual: HR 1.88, p < 0.001; fully adjusted: HR 1.61, p < 0.001), and
lower CSF amyloid (individual: HR 0.37, p < 0.001; fully adjusted: HR 0.62, p = 0.008) were
most strongly associated with conversion to AD individually and independently.
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Glossary

AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CDR = Clinical Dementia Rating; CMB =
cerebral microbleeds; CN = cognitively normal; CVD = cerebrovascular disease; HR = hazard ratio; MCI = mild cognitive
impairment; MMSE = Mini-Mental State Examination; SMC = significant memory concern; WMH = white matter
hyperintensities; TIV = total intracranial volume.

Discussion

Lower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers
were predictive of conversion to AD from MCIL, whereas WMH were predictive of conversion to MCI from cognitively normal.
The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathologic pathway,

such as vascular cognitive impairment.

Dementia affects over 50 million people worldwide, making it
one of the greatest socioeconomic challenges of our time." Of
dementia cases, around 50%-75% will have a primary di-
agnosis of Alzheimer disease (AD), with high proportions of
cases with mixed pathologies at postmortem.” Early diagnosis
and prediction of clinical progression is imperative because
earlier intervention, before significant decline in cognition, is
likely to lead to more effective treatment. Identifying bio-
markers that are predictive of clinical progression in those
without initial cognitive impairment and those with mild
cognitive impairment (MCI) would better aid selection of
individuals for future trial participation. As biomarkers rep-
resent different pathologic processes, assessing their in-
dividual and independent predicative ability above others
would further inform our understanding of complexities of
progression in both MCI and AD.

There is a general consensus that biomarkers representing
hallmark pathologies in AD, such as extracellular cerebral am-
yloid deposition and intracellular phosphorylated tau tangle
accumulation, precede neurodegeneration biomarkers.’ In
clinical AD, these biomarkers have been estimated to deviate
approximately 10-15 years before the earliest signs of cognitive
impairment,” with some reports of amyloid changing before
tau. CSF biomarkers of amyloid and tau agree well with post-
mortem amyloid deposition and tau accumulation, re-
spectively.> CSF amyloid beta (1-42) and phosphorylated tau
181 (ptau) have varied reported abilities in predicting clinical
change in healthy controls. In univariate models, both amyloid
and ptau have been shown to have significant associations with
progression to MCI symptom onset,’ but when modeled with
whole-brain volumes, only higher ptau levels have been shown
to have associations with progression.” Additional reports that
binarize CSF amyloid and ptau into positive and negative
groups found being amyloid or ptau positive was associated
with progression to AD or dementia, with CSF amyloid
showing increased group separation over p’tau.8

A well-established downstream biomarker of neurodegeneration

in dementia is brain atrophy.9 Previous studies using Cox re-
gression modeling in participants with MCI found that single
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time-point whole-brain and hippocampal volumes were pre-
dictive of future progression to AD.'"" Some findings showed
that whole-brain volume, hippocampal volume, and CSF amyloid
were separately predictive of conversion from MCI to AD,
whereas in multivariate models, only whole-brain and hippo-
campal volumes were signiﬁcant.12 There is little information
regarding the use of these biomarkers in predicting decline from
controls to MCL

Some reports highlight the coexistence of cerebrovascular dis-
ease (CVD) in AD."'* CVD has numerous imaging features
associated with differing underlying pathologies. White matter
hyperintensities (WMH) of presumed vascular origin and ce-
rebral microbleeds (CMBs) are 2 such imaging features thought
to represent different pathologic processes,15 both associated
with neurodegeneration.'®"” Higher WMH burden at baseline is
associated with later progression to MCL'® and increases in
WMH volumes have been reported to occur before MCI on-
set."” WMH have been shown to be associated with MCI
symptom onset in individuals with a low level of total tau,”® but
not when modeled with CSF biomarkers (amyloid and ptau).
Because of WMH and CMB presence in AD, and mixed findings
in univariate and smaller multivariate models, assessment of
these markers in predicting progression separately and in models
with biomarkers of AD and neurodegeneration is important.

Cox regression models that assess classical biomarkers typi-
cally focus on univariate biomarker models,*'*"" with some
exploring the associations of AD-related biomarkers in mul-
tivariate models.”'>*° Because multiple pathologies are often
present in AD, considering the individual and independent
association of these biomarkers is useful. This will further help
make inferences about competing markers involved in AD
pathology and elucidate biomarkers that are consistently as-
sociated with clinical progression.

In this study, we assessed single time-point (baseline) bio-
markers of pathology and their separate and independent
abilities to predict subsequent clinical progression in those
without dementia. Here, we use survival analysis to explore
whether CSF biomarkers of AD-related pathology (amyloid
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and tau), neurodegenerative biomarkers (whole-brain and
hippocampal volumes), and measures of CVD (WMH and
CMB) are useful in predicting clinical progression. In addition
to assessing the individual predictive value of each marker, we
fitted a multivariable model including all biomarkers to predict
progression to MCI from normal cognition (CN) (CNtoMCI)
and AD from MCI (MCItoAD). By focusing on single time-
point biomarkers, we aim to evaluate clinical utility of cross-
sectional (single visit) measures because longitudinal metrics
may not be possible to collect for all individuals.

We hypothesize that predictors of conversion from CN to
MCI and from MCI to AD will differ, because of the initial
clinical stage of each group. In addition, we hypothesize that
multiple biomarkers will be better at predicting conversion
than individual biomarkers owing to the heterogeneity of
pathologies present in groups.

Methods

Cohort

Data used in the preparation of this article were obtained from
the AD Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biomarkers, and clinical and neuro-
psychological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date in-
formation, see adni-info.org.

In this study, newly enrolled ADNI2/GO participants who
were CN, or who had MCI, at the baseline assessment (which
follows the screening visit), were included. These participants
were followed through the course of ADNI2/GO, with some
continuing to ADNI3. The CN group included those who
were labeled as either CN or significant memory concern
(SMC); those who were in the MCI group had either late or
early MCI according to the screening visit.

All individuals included in the current study were of good
general health and between 55-90 years, spoke either English
or Spanish fluently, and had a reliable study partner and a
Hachinski score of <S. Only participants with preserved ac-
tivities of daily living and an absence of any other significant
neurologic disorder apart from suspected AD were included.

CN individuals were defined by having a Mini-Mental State
Examination (MMSE) score between 24 and 30 (inclusive) at
baseline and a Clinical Dementia Rating (CDR) score of 0.
CN individuals were normally functioning as measured
by education-adjusted scores on delayed recall of 1 paragraph
from Wechsler Memory Scale Logical Memory II. CN indi-
viduals who reported subjective memory concerns were la-
beled as SMC. Individuals with MCI were required to have an
MMSE score between 24 and 30 (inclusive) at baseline,
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objective memory loss by education-adjusted scores on
Wechsler Memory Scale Logical Memory II, a global CDR
equal to 0.5, and report subjective memory concerns.

Individuals were given a diagnosis at baseline, month 6, month
12, and then yearly. Changes in diagnosis were recorded at these
time points. At follow-up, those with evidence of clinical pro-
gression were given a converting diagnosis by a physician at site,
whereas those with improvements may have received a reverting
diagnosis. For those progressing from MCI to AD, individuals
with AD were defined by having an MMSE score between 20
and 26 (inclusive), a CDR of 0.5 or 1.0, subjective memory
concern, and NINCDS-ADRDA criteria for probable AD.

To be included in this study, individuals had to have complete
measures of CSF amyloid beta 1-42 and phosphorylated tau
181 (ptau) at their baseline visit and suitable MRI scans that
produced quality measures of WMH, CMB, whole-brain, hip-
pocampal, and total intracranial volume (TIV) measurements.

CSF Measurements

Baseline CSF amyloid 1-42 and ptau 181 measurements
(untransformed to ADNI1) were obtained from the ADNI bio-
marker core (University of Pennsylvania) using the microbead-
based multiplex immunoassay, the INNO-BIA AlzBio3 RUO test
(Fujirebio, Ghent, Belgium), on the Luminex platform (Luminex
Corp, Austin, TX) (UPENN_CSF Biomarker Data Master
[ADNI1,GO,2], Version: 2016-07-05).

Presumed Cerebrovascular Measurements
WMH volumes of presumed vascular origin in the supra-
tentorial brain region were calculated using BaMoS (applied
to FLAIR and T1-weighted images).”" All outputs were vi-
sually assessed by experienced raters.””

Numbers of probable and definite microbleeds were identified
and counted using the Microbleed Anatomical Rating Scale using
T2*-weighted imaging.23 Both FLAIR and T1-weighted imaging
were registered to the T2*-weighted imaging to ensure accurate
identification of microbleeds. For both microbleed identification
and the checking of WMH, the software package NiftyMIDAS
was used (Centre for Medical Image Computing, uCL).*

Brain Volume Measurements

Whole-brain volume, hippocampal volume, and TIV were
extracted from T1-weighted scans. Whole-brain volumes
were calculated using semiautomated Brain MAPS,*® with
quality control and manual edits made using MIDAS.*
Quality-controlled hippocampal volumes were calculated
using STEPS,”” and TIVs were calculated from T1-
weighted images using the Geodesic information flows la-
bel fusion framework.”®

Demographics

Diagnostic and demographic data (age, sex, race, education,
and follow-up time) were downloaded from the ADNI data-
base (adni.loni.usc.edu/).

Neurology.org/N


http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
http://adni.loni.usc.edu/
http://neurology.org/n

Table Baseline Demographics and Measurements in Control to MCl and MCI to AD Groups

CN to MCI (n = 189)

MCI to AD (n = 345)

Nonconverters Converters p Value Nonconverters Converters p Value

N 157 32 245 100
No. with SMC (%) 50 (32) 10 (31) 1 N/A N/A
Gender (% male) 70 (45) 18 (56) 0.2 132 (54) 54 (54) 1
Proportion by race, (%) 0.7

White 92 88 0.5 93 98

Asian 1 0 1 1

Hawaiian or Other Pacific Islander 0 0 <1 0

Black or African American 5 9 2 0

American Indian or Alaskan 0 0 <1 0

>1 reported 2 3 1 1

Unknown 0 0 1 0
Mean maximal follow-up, yrs 4.9 (2.3) 5.3(2.2) 0.5 4.6 (2.5) 4.4(2.1) 0.7
Mean time to conversion, yrs (SD; Min-Max) N/A 4.9 (2.3; 0.4-8.4) N/A 2.7 (2.0; 0.3-9.3)
Age at baseline, yrs 72.5 (5.6) 76.9 (6.8) <0.001 71.2(7.6) 72.9 (6.9) 0.04
CSF amyloid, pg/mL 290.1 (82.7) 238.4 (88.6) 0.002 256.4 (77.5) 192.1 (58.1) <0.001
CSF ptau, pg/mL 21.8(10.8) 23.1(9.0) 0.5 22.2(10.8) 33.2(13.1) <0.001
WMH median?®, ml (IQR, ml) 3.0(3.4) 6.2 (7.4) <0.001 3.3(5.4) 4.7 (9.1) 0.2
No. with microbleeds, (%) 21 (14) 8(25) 0.1 26 (11) 22 (22) 0.01
Whole-brain volume?®, ml 1,080.7 (104.2) 1,061.8 (87.9) 0.001 1,081.7 (100.9) 1,067.5 (117.3) <0.001
Hippocampal volume?, ml 5.6 (0.6) 5.2(0.7) <0.001 5.4(0.7) 5.1(0.8) <0.001
TIV, ml 1,414.3 (133.6) 1,426.2 (117.2) 0.6 1,422.2 (125.0) 1,439.7 (151.2) 0.3

Abbreviations: MCl = mild cognitive impairment; N/A = not applicable; SMC = significant memory concern; TIV = total intracranial volume; WMH = white matter

hyperintensities.

p Value representing linear regression or Fisher exact (SMC, gender, and microbleeds). Numbers are mean (SD), unless otherwise stated.

WMH p values using log2 transformed values.
2 p value TIV adjusted.

Statistical Analysis

Data Transformation

We initially log-transformed (log,) WMH and then stan-
dardized all biomarkers used in Cox regression models to
produce z scores. Standardization enabled consistency and
comparisons of the individual biomarkers” ability in predicting
change in diagnosis. We further created dichotomized bio-
markers using a median split for those biomarkers that
showed significant prediction of progression to facilitate the
result visualization. Because of its bimodal nature, a gaussian
mixture model was used to establish the value of CSF amyloid
used to dichotomize results (cutpoint 256 pg/mL). This was
performed using R* and has been used previously for this
variable.*°
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Baseline (First Time Point) Variable Analysis

The CNtoMCI and MCItoAD groups were analyzed sepa-
rately. For continuous measures, we used linear regression to
assess whether those who converted differed from those who
remained stable. For WMH, log-transformed WMH were
used in the regression models. For binary variables, the Fisher
exact test was used.

Modeling the Prediction of Progression

The CNtoMCI and MCItoAD groups were analyzed sepa-
rately. Cox proportional hazards regression was used, which
can allow for the time-to-event outcome (diagnostic change
and named survival probability) and data censoring. In-
dividual models were fitted for each biomarker separately as
well as a multivariable (fully adjusted) model.
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Figure 1 Hazard Ratios in the CNtoMCI Group

Hazard Lower Upper
ratio limit limit

Number of participants (converters) 189 (32)
CSF amyloid

Individual model - 0.63 0.44 0.91

Fully adjusted model = 0.80 0.51 1.26
CSF ptau

Individual model = 1.14 0.80 1.62

Fully adjusted model ] 0.95 0.65 1.40
White matter hyperintensities

Individual model f—— 1.79 1.24 2.58

Fully adjusted model f = I 98 1.26 3.13
Microbleeds

Individual model = 0.97

Fully adjusted model = 0.94
Whole-brain volume

Individual model —— 0.55 0.19 1.63

Fully adjusted model —— 0.58 0.18 1.90
Hippocampal volume

Individual model - 0.54 0.35 0.81

Fully adjusted model : “T' | : : : 0.40 0.24 0.65

00 05 1.0 15 20 25 30

<—- Decreased—-

-—-Increased -—>

HR scores (along with upper and lower Cl limits) from the Cox regression models separately and in the fully adjusted model (containing all biomarkers), with
age adjustment. Individual models, WMH, hippocampal volume, and whole-brain volume, and the fully adjusted model were TIV adjusted. The proportional
hazard (PH) assumption was met in all instances (p > 0.05, all tests). The individual bars visually represent these HRs along with their uncertainty around the
estimate (upper and lower limits). Bars below 1 highlight that decreased levels of the biomarker are associated with progression, whereas bars above 1
highlight thatincreased levels of the biomarker are associated with progression. Bars crossing 1 are not significantly associated with clinical progression. CN =

cognitively normal; HR = hazard ratio; TIV = total intracranial volume; WMH =

white matter hyperintensities.

To establish whether hazards were constant over time, a test
for proportional hazards assessment was made. In instances of
nonproportional hazards, an interaction of log time was in-
troduced for each nonproportional marker.

Likelihood ratio tests were performed to compare the good-
ness of fit of different models. A Harrell’s C-index was used to
assess the predictive power of the fully adjusted compared
with univariate models. In models with nonproportional
hazards, a weighted C-index was used,*! which allows for an
average hazard ratio (HR) to be found even in the presence of
nonproportional hazards.

In addition to individual and fully adjusted models, we
created other exploratory models of different group com-
binations (eTables 1 and 2, links.lww.com/WNL/C477).
These exploratory models included a CSF model (amyloid,
ptau), a presumed vascular model (WMH, microbleeds),
and a neurodegeneration (volume) model (whole brain,
hippocampi).

Adjustments and Covariates

In the demographics, TIV was included as a nuisance
covariate in linear regressions assessing differences in
WMH, hippocampal volume, and whole-brain volume
across groups. For Cox regression models, age was used as a
covariate. Cox regression models that included WMH,
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hippocampal volume, and whole-brain volume also in-
cluded TIV as a nuisance covariate. Results from un-
adjusted Cox regression models (apart from the nuisance
variable of TIV) and results from models with age, sex, and
education covariates are shown in eTables 3-6, links.Iww.
com/WNL/C477.

Visualization of Results

To visualize the data, we created forest plots to show the HR
and 95% Cls for each marker modeled separately (using
outputs from the individual models) and independently
(from the fully adjusted model). For significant biomarkers,
we produced Kaplan-Meier curves to show conversion
probability over time using dichotomized values described
earlier.

Standard Protocol Approvals, Registrations,
and Patient Consents

For ADNI, protocol and informed consent forms were
approved by the institutional review board at each par-
ticipating site.

Data Availability

Anonymized data are available from ADNI (adni.loniusc.
edu/), and included data will be made available by request
from any qualified investigator.
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Figure 2 Kaplan-Meier Survival Estimates in the CNtoMCl Group

A. White matter hyperintensities

100
L
z 751
a
B
o 50+
t .
o
©
E 25
S Volume lower than 3.3 mL
n

04 Volume greater than 3.3 mL

0 ! 2 3 4 5 6 7 8
Year of follow-up

Number at risk:
90 85 79 65 62 51 39 24 8

— 99 92 78 64 59 42 35 15

B. Hippocampal volume

100
754
50
25
Volume greater than 5.5 mL
04 Volume lower than 5.5 mL

0 1 2 3 4 5 6 7 8
Year of follow-up

Number at risk:
91 88 81 67 63 54 42 19 5

— 98 89 76 62 58 39 32 20 6

(A and B) Kaplan-Meier curves of the two separately and independently significant predictors in both individual and fully adjusted Cox regression models
(WMH and hippocampal volume) for the CNtoMCl group. Continuous variables have been dichotomized at a median point, with shaded regions representing
95% Cl. CN = cognitively normal; MCI = mild cognitive impairment; WMH = white matter hyperintensities.

Results

From an initial sample of 1,217, 661 participants were removed
because of incomplete data (n = 395, CNtoMCL; n = 266,
MCItoAD). An additional 22 participants were removed owing to
fluctuating, reverting, or missing longitudinal diagnoses (n = 3,
CNtoMCL n = 19, MCItoAD).

The remaining 534 individuals (CNtoMCI, n = 189; MCItoAD,
n = 345) were included in this study (Table). For the CNtoMCI
group, we found that the converters were over 4 years older in
age at baseline (p < 0.001) and with double the volume of WMH
(p < 0.001) than those who remained stable and cognitively
normal. In this group, the converters had lower CSF amyloid
(p = 0.002), whole-brain volumes (p = 0.001), and hippocampal
volumes (p < 0.001) compared with those who remained stable.
In the MCItoAD group, we found converters to be nearly 2 years
older (p = 0.04) at baseline on average, with higher levels of CSF
ptau (p < 0.001) and a greater proportion of individuals with
microbleeds (p = 0.01). Those who converted from a diagnosis
of MCI to AD had lower levels of CSF amyloid (p < 0.001),
whole-brain volumes (p < 0.001), and hippocampal volumes
(p < 0.001) compared with those who remained stable. Full
demographics showing values before exclusion of individuals are
reported in eTable 7, linkslww.com/WNL/C477.

CNtoMCI

Both separately and in the fully adjusted model, greater WMH
burden and lower hippocampal volume were most strongly
associated with conversion to MCI from CN (Figure 1). In the
fully adjusted model, there was a strong association between
both higher WMH (HR 1.98; p = 0.003) and lower baseline
hippocampal volume (HR 0.40; p < 0.001) with conversion.
Lower CSF amyloid levels were separately associated with
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conversion (HR 0.63; p < 0.001). There was no evidence that
CSF ptau, microbleeds, or whole-brain volume was associated
with conversion. Using a likelihood ratio test, there was evi-
dence that the fully adjusted model had a better fit compared
with each of the individual models (p < 0.004, all tests) and a
higher Harrell's C-index of the fully adjusted model (0.77)
compared with individual markers.

Additional models of CSF, presumed vascular, and volume are
reported in eTable 1, linksIww.com/WNL/C477. CSF am-
yloid (HR 0.62; p = 0.02) was predictive in the CSF model,
WMH (HR 1.75; p = 0.004) were predictive in the presumed
vascular model, and hippocampal volume (HR 0.55; p =
0.006) was predictive in the volume model.

For WMH reported in Figure 2A, the Kaplan-Meier curves
suggest a clear distinction between those with WMH values
either side of the median value, with those with greater than
median values more likely to progress to MCL For hippocampal
volumes reported in Figure 2B, those with lower volumes had a
greater conversion rate but with overlap in the 95% ClIs of the
estimates at every time point.

MClItoAD

Lower hippocampal volume, whole-brain volume, CSF amy-
loid, and higher CSF ptau were most strongly associated
with later conversion from MCI to AD both separately and
independently (Figure 3). There was evidence of a strong asso-
ciation of conversion with higher CSF ptau (HR 1.61; p < 0.001),
lower hippocampal volume (HR 0.55; p < 0.001), lower CSF
amyloid (HR 0.62; p = 0.008), and lower whole-brain volume
(HR 048; p = 0.008) in the fully adjusted model. The fully
adjusted model had a significantly better fit than all individual
models (p < 0.001, all tests) and a higher weighted Harrell’s
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Figure 3 Hazard Ratios in the MCItoAD Group

Hazard Lower Upper
ratio limit limit
Number of participants (converters) 345 (100)
CSF amyloid
Individual model Ly 0.37 0.29 0.48
Fully adjusted model - 0.62 0.44 0.89
CSF ptau
Individual model = 1.88 216
Fully adjusted model = 1.61 1.89
White matter hyperintensities
Individual model - 1.06 0.85 1.33
Fully adjusted model - 1.04 0.82 1.31
Microbleeds
Individual model e 0.97 0.82
Fully adjusted model = 1.02 0.86
Whole-brain volume
Individual model H— 0.31 0.19 0.52
Fully adjusted model - 0.48 0.26 0.87
Hippocampal volume
Individual model - 0.45 0.35 0.59
Fully adjusted model . I—II—| | : . 0.55 0.40 0.75
00 05 1.0 15 20

<—- Decreased—-

-—-Increased -—>

Hazard ratios and their upper and lower limits from both individual and fully adjusted models for the MCItoAD group with age adjustment. Individual models, WMH,
hippocampal volume, and whole-brain volume, and the fully adjusted model were TIV adjusted. The proportional hazards assumption was met in all individual models
(p>0.05, all tests) excluding hippocampal volume, so a time varying coefficient (TVC) was included to account for this. In the fully adjusted model, this assumption was
not met for whole-brain volume or for hippocampal volume (p < 0.05, both tests) and was accounted for with a TVC correction. ATVC correction was also applied to age.
The individual bars visually represent these HRs along with their uncertainty around the estimate (upper and lower limits). Bars below 1 highlight that decreased levels
of the biomarker are associated with progression, whereas bars above 1 highlight that increased levels of the biomarker are associated with progression. Bars crossing
1 are not significantly associated with clinical progression. AD = Alzheimer disease; HR = hazard ratio; MCI = mild cognitive impairment; WMH = white matter

hyperintensities.

C-index of the fully adjusted model (0.81) compared with in-
dividual markers.

eTable 2, linkslww.com/WNL/C477, shows predictive abil-
ities of biomarkers in other models (CSF, presumed vascular,
and volume). Consistent with the individual and fully adjusted
models, lower hippocampal volume and whole-brain volume,
higher CSF ptau, and lower CSF amyloid were most strongly
associated with later conversion from MCI to AD.

The Kaplan-Meier curves (Figure 4A) show a clear distinction
between CSF amyloid-positive and CSF amyloid-negative in-
dividuals, with amyloid-positive individuals more likely to pro-
gress to AD. CSF ptau Kaplan-Meier curves show that those with
greater than median values were more likely to convert to AD
(Figure 4B). For hippocampal volume, those with volumes be-
low the median value were more likely to convert to AD
(Figure 4C). For whole-brain volume, those with volumes below
the median value were more likely to convert to AD (Figure 4D).

Discussion

We found that lower hippocampal and higher WMH volume
predicted progression in controls who converted to MCI;
lower hippocampal volume, CSF amyloid, whole-brain
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volume, and higher CSF ptau predicted progression from
MCI to AD. Smaller hippocampi were a consistent predictor
of clinical progression in both groups. Notably, models that
included all variables were a better fit compared with separate
models that individually investigated each marker of interest.

There was strong evidence that higher WMH volume and
lower hippocampal volume were associated with conversion
to MCI individually and independently. Lower whole-brain
volume and lower CSF amyloid were associated with con-
version to MCI when considered individually but not in-
dependently in our main analyses.

Past research has shown that CSF amyloid is an important
predictor of cognitive impairment,®* and previous univariate
models report a significant association with progression to
MCL” This is consistent with our current findings in univar-
iate models, and we extend this to show that this association is
not significant when accounting for other biomarkers. This
suggests that, in the cohort of individuals recruited as controls,
other biomarkers (hippocampal volumes and WMH) may
better identify those likely to progress to MCL

We did not find evidence of ptau being predictive of future
progression to MCI. There are mixed findings with respect to

ptau, with some studies reporting a lack of evidence for ptau
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Figure 4 Kaplan-Meier Survival Estimates in the MCItoAD Group
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(A-D) Kaplan-Meier curves of the three separately and independently significant predictors in both individual and fully adjusted Cox regression models (CSF
amyloid, CSF ptau, hippocampal volume, and whole-brain volume), displaying their individual predictive power over time by median split or gaussian mixture
model cutpoint (raw CSF amyloid cutpoint of 256 pg/mL). Shaded regions represent 95% Cl. AD = Alzheimer disease; MCl = mild cognitive impairment.

being a predictor in early disease stages and concluding that it
may be useful later in the disease.*” It could be suggested that
our CNtoMCI cohort may be too early in the disease to find
ptau predictive. It is also possible that ptau was not a signifi-
cant predictor in our models because individuals who convert
to MCI in this group may not all be on the AD pathway. A
substantial proportion of converters in this group may be
following a more vascular or mixed pathology pathway, and
this may explain the differences between our findings and
previous work.®” As ptau in those with vascular dementia
shows similar levels to healthy controls,® this strengthens the
suggestion that our CNtoMCI cohort is likely to contain a
mixed population of those on AD, vascular, or other pathways.

The strong association of WMH with progression in this group
may be consistent with these individuals being on a more vascular
or mixed dementia pathway.ls‘19 Supportive evidence assessing
patients with cerebral small vessel disease showed that WMH and
hippocampal volume were useful in predicting dementia pro-
gression,* congruent with our findings. Another study reported
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no association with WMH and progression.”® As they noted, we
cannot be certain that those converting to MCI will progress to
AD or another dementia type, nor can we be certain as to which
clinical criteria they will meet if they do convert.

In the CSF model (eTable 1, links.Iww.com/WNL/C477),
CSF amyloid was signiﬁcant. Without age as a covariate,
microbleeds were individually associated with progression
(eTable 3). The variability of significance of these 2 markers
in the individual, fully adjusted, and supplementary analysis
suggests that associations with other markers are likely pre-
sent. For example, associations of CSF amyloid and WMH
have been shown previously.>> As WMH and hippocampal
volume are strong predictors, they may influence the associ-
ation of CSF amyloid and microbleeds in larger models.

These results show higher WMH and lower hippocampal
volume as strong predictors of clinical progression in healthy
controls, both individually and in models that include other AD
pathology biomarkers. Although we do not yet know whether
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these individuals will progress to AD in the future, using
baseline WMH and hippocampal volume is useful in identifying
those who develop cognitive impairment, and these findings
may be useful in enriching clinical trials. Notably, models that
included all variables were a better fit than individual models,
suggesting biomarkers that capture a full range of pathology are
more likely to identify individuals likely to progress.

Lower hippocampal volume, whole-brain volume, CSF amy-
loid, and higher CSF ptau were most strongly associated with
conversion to AD in all models, including in supplementary
models (eTable 2, links.Iww.com/WNL/C477).

These results are consistent with hypothetical biomarker
models,®> and previous univariate models of hippocampal
volume,*® whole-brain volume,'* CSF ptau,37 and CSF amy-
loid,*® as predictors for conversion to AD. Confirmatory as-
pects of these results strengthen their individual use when

identifying individuals likely to progress.

In the fully adjusted model without an age covariate, and
when adjusting for age, sex, and education (eTables S and 6,
links.lww.com/WNL/C477), whole-brain volume was not
predictive of progression. This highlights the variability of
baseline whole-brain volume as a clear predictor of pro-
gression to AD. Past reports of univariate models using
baseline whole-brain volume have shown brain volume to be
predictive,'> and other reports have shown no significant
predictive power of this marker.>®*° Multivariable models
that also include whole-brain atrophy do not report whole-
brain volume as a significant predictor,*®*® as progressive
atrophy is likely a stronger predictor. Discrepancies between
our and previous work may be due to this marker’s associ-
ation with other covariates and a more subtle association
with progression to AD. More specific regional markers,
such as hippocampal volume, are more consistent predictors
of clinical progression.

In multivariable models, there are differences between our
and others” work. With CSF amyloid, previous research has
reported no association in other multivariable models.'? As
these previous models considered composite cognitive
markers and did not consider cerebrovascular markers, this
may suggest that cognitive markers, that are partly associated
with amyloid deposition, may provide additional benefit in
identifying those likely to progress. Future work could include
these cognitive measures into our multivariable model to
further explore these associations. An additional publication
reporting a multivariable model also showed no association of
hippocampal volume or CSF amyloid.40 As the study did not
consider these markers individually, it is difficult to infer
whether hippocampal volume and CSF amyloid were not
predictive individually, or their associations were affected by
other biomarkers included in their models.

Of interest, although the proportion of those with CMB and
the WMH volume in those with AD has been reported to be
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higher than MCL* we did not find these markers to be as-
sociated with future progression. Moreover, the CSF and
brain volume markers were independent of WMH and CMB
in predicting progression to AD.

Our findings in MCItoAD confirm the hypothetical biomarker
model and previous individual Cox regression models. It is
important that we report the individual associations of key AD-
related biomarkers (amyloid, tau, and neurodegeneration) with
future diagnostic progression, their mutually independent
predictive ability with each other, and presumed vascular
markers. We also show that a model containing all variables is
better at predicting conversion than the individual models and
should be considered when identifying individuals with MCI
likely to progress diagnostically in clinical trials.

ADNI excluded participants with significant CVD (determined
by a Hachinski ischemic score of >4). Even with this limitation,
we found that WMH were an important predictor of conversion
of CN individuals to MCI. However, this may mean that we are
underestimating the impact of CVD and its effects on pro-
gression. In MCItoAD, we may have missed a real effect of
vascular disease in the current cohort that may be present in a
more inclusive MCI group. It would be difficult to generalize
these findings to a community-based population, specifically with
the coexistence of vascular pathologies in both MCI and AD.

Lacunes could have been an important vascular marker to
consider because of their association with neurodegeneration
and WMH.">'® ADNI excludes those with multiple lacunes and
lacunes in critical memory structures. We found that the sample
size with lacunes was too small to consider testing this variable

formally.

The current cohort consists of mainly White and relatively
well-educated individuals. This limits generalizability of our
study to more diverse populations.

Most individuals in the current study with an MCI diagnosis
have amnestic presentations. There is some debate around the
use of the term “amnestic MCI” in ADNL** and future work
could explore whether the level of memory impairment in-
fluences results within the ADNI cohort.

For multivariable Cox regression models, we chose to pre-
sent data in complete cases. Excluding those with missing
data may have biased our analysis in addition to reducing
power to detect effects. This resulted in a smaller sample size
and some instability that would benefit from future repli-
cation with a larger cohort.

Most importantly, we do not have autopsy confirmation of the
diseases causing cognitive impairment. This remains the gold
standard when confirming diagnosis.

With continued follow-up of the ADNI cohort, it may be
possible to study individuals who progress from CN to MCI
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through to dementia. This would potentially allow us to make
inferences regarding the earliest biomarkers of AD. It would
also be important to consider those progressing to other
vascular and mixed dementias, as we could then make accu-
rate inferences regarding the significant predictors in the
previously reported CNtoMCI and MCItoAD groups. By
continuing to follow these individuals through their disease
course, with more extensive diagnostic etiologies, vital in-
formation regarding disease progression, heterogeneity, and
further biomarker predictions could be inferred.

Our work assessed baseline biomarkers of classical AD pa-
thology, presumed CVD, and neurodegeneration. By fitting
separate and mutually adjusted multivariable models, we were
able to comprehensively assess associations of these biomarkers
with clinical progression, both individually and independently
of other biomarkers. Furthermore, this enabled us to establish
that models including all variables were better at predicting
progression than individual models. Our findings add to the
existing literature on biomarkers that predict progression from
control to MCI as well as from MCI to AD and will aid re-
searchers when selecting the biomarkers needed to identify
individuals likely to clinically progress.

The current study examined both univariate and multivariable
Cox regression models of biomarkers that are likely useful in
predicting clinical progression to AD. As previous studies
have focused typically on univariate models, our novel re-
search has expanded on this to demonstrate biomarkers that
are independently predictive of conversion to MCI and AD, as
well as demonstrate the associations the biomarkers have with
each other in larger multivariate models.

This study showed that higher WMH and lower hippocampal
volume predicted clinical conversion to MCI in those who were
enrolled as controls, whereas higher ptau, lower hippocampal
volume, and lower CSF amyloid predicted conversion to AD
from MCI. Lower hippocampal volume is a consistent pre-
dictor of future clinical progression, which is likely due to it
being a vulnerable structure to many pathologic insults, and
reduction in its volume will affect memory and cognitive pro-
cess associated with MCI and AD. Our results indicate that
WMH are early biomarkers of future cognitive impairment in
controls. This may be because the controls in this study who
converted to MCI are on a mixed or non-AD pathologic
pathway. Both in univariate and multivariate models, baseline
'WMH and hippocampal volume were meaningful predictors of
conversion to MCI, emphasizing their importance to help
identify those at risk of future clinical progression and identi-
fying those for future trial participation.
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