110 research outputs found

    Re-configurable, multi-channel, high-speed FBG strain sensing system for vibration analysis in oil risers

    Get PDF
    Eight re-configurable, synchronized resonant cavity time-division- multiplexed FBG sensor interrogators provide 16,800 high-resolution measurements-per-second from 280 axially embedded strain sensors, for the analysis of vortex-shedding-induced vibration and bending in a composite oil riser pipe

    Fibroblast growth factors 1 and 2 in cerebrospinal fluid are associated with HIV disease, methamphetamine use, and neurocognitive functioning.

    Get PDF
    BackgroundHuman immunodeficiency virus (HIV) and methamphetamine use commonly affect neurocognitive (NC) functioning. We evaluated the relationships between NC functioning and two fibroblast growth factors (FGFs) in volunteers who differed in HIV serostatus and methamphetamine dependence (MAD).MethodsA total of 100 volunteers were categorized into four groups based on HIV serostatus and MAD in the prior year. FGF-1 and FGF-2 were measured in cerebrospinal fluid by enzyme-linked immunosorbent assays along with two reference biomarkers (monocyte chemotactic protein [MCP]-1 and neopterin). Comprehensive NC testing was summarized by global and domain impairment ratings.ResultsSixty-three volunteers were HIV+ and 59 had a history of MAD. FGF-1, FGF-2, and both reference biomarkers differed by HIV and MAD status. For example, FGF-1 levels were lower in subjects who had either HIV or MAD than in HIV- and MAD- controls (P=0.003). Multivariable regression identified that global NC impairment was associated with an interaction between FGF-1 and FGF-2 (model R(2)=0.09, P=0.01): higher FGF-2 levels were only associated with neurocognitive impairment among subjects who had lower FGF-1 levels. Including other covariates in the model (including antidepressant use) strengthened the model (model R(2)=0.18, P=0.004) but did not weaken the association with FGF-1 and FGF-2. Lower FGF-1 levels were associated with impairment in five of seven cognitive domains, more than FGF-2, MCP-1, or neopterin.ConclusionThese findings provide in vivo support that HIV and MAD alter expression of FGFs, which may contribute to the NC abnormalities associated with these conditions. These cross-sectional findings cannot establish causality and the therapeutic benefits of recombinant FGF-1 need to be investigated

    Interrogating the Evolutionary Paradox of Schizophrenia: A Novel Framework and Evidence Supporting Recent Negative Selection of Schizophrenia Risk Alleles

    Get PDF
    Schizophrenia is a psychiatric disorder with a worldwide prevalence of ∼1%. The high heritability and reduced fertility among schizophrenia patients have raised an evolutionary paradox: why has negative selection not eliminated schizophrenia associated alleles during evolution? To address this question, we examined evolutionary markers, known as modern-human-specific (MD) sites and archaic-human-specific sites, using existing genome-wide association study (GWAS) data from 34,241 individuals with schizophrenia and 45,604 healthy controls included in the Psychiatric Genomics Consortium (PGC). By testing the distribution of schizophrenia single nucleotide polymorphisms (SNPs) with risk and protective effects in the human-specific sites, we observed a negative selection of risk alleles for schizophrenia in modern humans relative to archaic humans (e.g., Neanderthal and Denisovans). Such findings indicate that risk alleles of schizophrenia have been gradually removed from the modern human genome due to negative selection pressure. This novel evidence contributes to our understanding of the genetic origins of schizophrenia

    Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism

    Get PDF
    Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neurondirected microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder

    Expression of the Rap1 Guanine Nucleotide Exchange Factor, MR-GEF, Is Altered in Individuals with Bipolar Disorder

    Get PDF
    In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission

    Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-Infected Brain: Novel Analysis of Retrospective Cases

    Get PDF
    HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (n = 3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (n = 4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3′ untranslated region (3′UTR) target-sites for dysregulated miRNAs. We provide evidence that certain miRNAs serve as key elements in gene regulatory networks in HIV-infected FC and may be implicated in neurobehavioral disorder. Finally, our data indicates that some genes may serve as hubs of miRNA activity

    Molecular Pathology of Neuro-AIDS (CNS-HIV)

    Get PDF
    The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE). With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3β, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3β has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3β signaling pathway by FGF1 or GSK3β inhibitors (lithium, valproic acid) is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3β inhibitors. In addition to the GSK3β pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3β and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3β and CDK5 pathways in neurodegeneration in HIV

    Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science.

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic is having a profound effect on all aspects of society, including mental health and physical health. We explore the psychological, social, and neuroscientific effects of COVID-19 and set out the immediate priorities and longer-term strategies for mental health science research. These priorities were informed by surveys of the public and an expert panel convened by the UK Academy of Medical Sciences and the mental health research charity, MQ: Transforming Mental Health, in the first weeks of the pandemic in the UK in March, 2020. We urge UK research funding agencies to work with researchers, people with lived experience, and others to establish a high level coordination group to ensure that these research priorities are addressed, and to allow new ones to be identified over time. The need to maintain high-quality research standards is imperative. International collaboration and a global perspective will be beneficial. An immediate priority is collecting high-quality data on the mental health effects of the COVID-19 pandemic across the whole population and vulnerable groups, and on brain function, cognition, and mental health of patients with COVID-19. There is an urgent need for research to address how mental health consequences for vulnerable groups can be mitigated under pandemic conditions, and on the impact of repeated media consumption and health messaging around COVID-19. Discovery, evaluation, and refinement of mechanistically driven interventions to address the psychological, social, and neuroscientific aspects of the pandemic are required. Rising to this challenge will require integration across disciplines and sectors, and should be done together with people with lived experience. New funding will be required to meet these priorities, and it can be efficiently leveraged by the UK's world-leading infrastructure. This Position Paper provides a strategy that may be both adapted for, and integrated with, research efforts in other countries

    Comprehensive dissection of prevalence rates, sex differences, and blood level-dependencies of clozapine-associated adverse drug reactions

    Get PDF
    Clozapine is often underused due to concerns about adverse drug reactions (ADRs) but studies into their prevalences are inconclusive. We therefore comprehensively examined prevalences of clozapineassociated ADRs in individuals with schizophrenia and demographic and clinical factors associated with their occurrence. Data from a multi-center study (n=698 participants) were collected. The mean number of ADRs during clozapine treatment was 4.8, with 2.4% of participants reporting no ADRs. The most common ADRs were hypersalivation (74.6%), weight gain (69.3%), and increased sleep necessity (65.9%), all of which were more common in younger participants. Participants with lower BMI prior to treatment were more likely to experience significant weight gain (>10%). Constipation occurred more frequently with higher clozapine blood levels and doses. There were no differences in ADR prevalence rates between participants receiving clozapine monotherapy and polytherapy. These findings emphasize the high prevalence of clozapine-associated ADRs and highlight several demographic and clinical factors contributing to their occurrence. By understanding these factors, clinicians can better anticipate and manage clozapine-associated ADRs, leading to improved treatment outcomes and patient well-being
    corecore