6,105 research outputs found
Magnetic fields and differential rotation on the pre-main sequence
Maps of magnetic field topologies of rapidly rotating stars obtained over the last decade or so have provided unique insight into the operation of stellar dynamos. However, for solar-type stars many of the targets imaged to date have been lower-mass zero-age main sequence stars. We present magnetic maps and differential rotation measurements of two-higher mass pre-main sequence stars HD 106506 (~10 Myrs) and HD 141943 (~15 Myrs). These stars should evolve into mid/late F-stars with predicted high differential rotation and little magnetic activity. We investigate what effect the extended convection zones of these pre-main sequence stars has on their differential rotation and magnetic topologies. ©2009 American Institute of Physic
A Search for Stars of Very Low Metal Abundance. VI. Detailed Abundances of 313 Metal-Poor Stars
We present radial velocities, equivalent widths, model atmosphere parameters,
and abundances or upper limits for 53 species of 48 elements derived from high
resolution optical spectroscopy of 313 metal-poor stars. A majority of these
stars were selected from the metal-poor candidates of the HK Survey of Beers,
Preston, and Shectman. We derive detailed abundances for 61% of these stars for
the first time. Spectra were obtained during a 10-year observing campaign using
the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at
Las Campanas Observatory, the Robert G. Tull Coude Spectrograph on the Harlan
J. Smith Telescope at McDonald Observatory, and the High Resolution
Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform
a standard LTE abundance analysis using MARCS model atmospheres, and we apply
line-by-line statistical corrections to minimize systematic abundance
differences arising when different sets of lines are available for analysis. We
identify several abundance correlations with effective temperature. A
comparison with previous abundance analyses reveals significant differences in
stellar parameters, which we investigate in detail. Our metallicities are, on
average, lower by approx. 0.25 dex for red giants and approx. 0.04 dex for
subgiants. Our sample contains 19 stars with [Fe/H] < -3.5, 84 stars with
[Fe/H] < -3.0, and 210 stars with [Fe/H] < -2.5. Detailed abundances are
presented here or elsewhere for 91% of the 209 stars with [Fe/H] < -2.5 as
estimated from medium resolution spectroscopy by Beers, Preston, and Shectman.
We will discuss the interpretation of these abundances in subsequent papers.Comment: Accepted for publication in the Astronomical Journal. 60 pages, 59
figures, 18 tables. Machine-readable versions of the long tables can be found
in the ancillary data file
Desynchronization of pathological low-frequency brain activity by the hypnotic drug zolpidem.
Reports of the beneficial effects of the hypnotic imidazopyridine, zolpidem, described in persistent vegetative state^1, 2^ have been replicated recently in brain-injured and cognitively impaired patients^3-7^. Previous single photon emission computed tomography (SPECT) studies have suggested that sub-sedative doses of zolpidem increased regional cerebral perfusion in affected areas^5, 8^, implying enhanced neuronal metabolic activity; which has led to speculation that zolpidem 'reawakens' functionally dormant cortex. However, a neuronal mechanism by which this hypnotic drug affords benefits to brain injured patients has yet to be demonstrated. Here, we report the action of sub-sedative doses of zolpidem on neuronal network oscillatory activity in human brain, measured using pharmaco-magnetoencephalography (pharmaco-MEG). Study participant JP suffered a stroke in 1996, causing major damage to the left hemisphere that impaired aspects of both motor and cognitive function. Pharmaco-MEG analyses revealed robust and persistent pathological theta (4-10Hz) and beta (15-30Hz) oscillations within the lesion penumbra and surrounding cortex. Administration of zolpidem (5mg) reduced the power of pathological theta and beta oscillations in all regions of the lesioned hemisphere. This desynchronizing effect correlated well with zolpidem uptake (occurring approximately 40 minutes after acute administration) and was coincident with marked improvements in cognitive and motor function. Control experiments revealed no effect of placebo, while a structurally unrelated hypnotic, zopiclone, administered at a comparable dose (3.5mg) elicited widespread increases in cortical oscillatory power in the beta (15-30Hz) band without functional improvement. These results suggest that in JP, specific motor and cognitive impairments are related to increased low-frequency oscillatory neuronal network activity. Zolpidem is unique amongst hypnotic drugs in its ability to desynchronize such pathological low-frequency activity, thereby restoring cognitive function
Recommended from our members
Skin texture and colour predict perceived health in Asian faces
Facial skin texture and colour play an important role in observers' judgments of apparent health and have been
linked to aspects of physiological health, including fitness, immunity and fertility. However, most studies have
focused on Caucasian populations. Here, we report two studies that investigate the contribution of skin texture
and colour to the apparent health ofMalaysian Chinese faces. In Study 1, homogenous skin texture, as measured
by wavelet analysis, was found to positively predict ratings of apparent health of Asian faces. In study 2, homogenous skin texture and increased skin yellowness positively predicted rated health of Malaysian Chinese faces. This finding suggests that skin condition serves as an important cue for subjective judgements of health in Malaysian Chinese faces
Seeing the world through others’ minds: inferring social context from behaviour
Past research tells us that individuals can infer information about a target’s emotional state and intentions from their facial expressions (Frith & Frith, 2012), a process known as mentalising. This extends to inferring the events that caused the facial reaction (e.g. Pillai, Sheppard, & Mitchell, 2012; Pillai et al., 2014), an ability known as retrodictive mindreading. Here, we enter new territory by investigating whether or not people (perceivers) can guess a target’s social context by observing their response to stimuli. In Experiment 1, perceivers viewed targets’ responses and were able to determine whether these targets were alone or observed by another person. In Experiment 2, another group of perceivers, without any knowledge of the social context or what the targets were watching, judged whether targets were hiding or exaggerating their facial expressions; and their judgments discriminated between conditions in which targets were observed and alone. Experiment 3 established that another group of perceivers’ judgments of social context were associated with estimations of target expressivity to some degree. In Experiments 1 and 2, the eye movements of perceivers also varied between conditions in which targets were observed and alone. Perceivers were thus able to infer a target’s social context from their visible response. The results demonstrate an ability to use other minds as a window onto a social context that could not be seen directly
A multimodal perspective on the composition of cortical oscillations.
An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integrated electroencephalography and fMRI, or parallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in vitro rodent local field potentials. We compare spontaneous activity in the ∼10 Hz mu and 15-30 Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V (LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, cortico-cortical connectivity is reflected in the power of the SMC mu rhythm
- …