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SUMMARY 

 Reports of the beneficial effects of the hypnotic imidazopyridine, zolpidem, 

described in persistent vegetative state1, 2 have been replicated recently in brain-

injured and cognitively impaired patients3-7. Previous single photon emission 

computed tomography (SPECT) studies have suggested that sub-sedative doses of 

zolpidem increased regional cerebral perfusion in affected areas5, 8, implying 

enhanced neuronal metabolic activity; which has led to speculation that zolpidem 

‘reawakens’ functionally dormant cortex. However, a neuronal mechanism by which 

this hypnotic drug affords benefits to brain injured patients has yet to be 

demonstrated. 

  Here, we report the action of sub-sedative doses of zolpidem on neuronal 

network oscillatory activity in human brain, measured using pharmaco-

magnetoencephalography (pharmaco-MEG). Study participant JP suffered a stroke 

in 1996, causing major damage to the left hemisphere that impaired aspects of both 

motor and cognitive function. Pharmaco-MEG analyses revealed robust and 

persistent pathological theta (4-10Hz) and beta (15-30Hz) oscillations within the 

lesion penumbra and surrounding cortex.  Administration of zolpidem (5mg) 

reduced the power of pathological theta and beta oscillations in all regions of the 

lesioned hemisphere. This desynchronizing effect correlated well with zolpidem 

uptake (occurring approximately 40 minutes after acute administration) and was 

coincident with marked improvements in cognitive and motor function. Control 

experiments revealed no effect of placebo, while a structurally unrelated hypnotic, 

zopiclone, administered at a comparable dose (3.5mg) elicited widespread 



increases in cortical oscillatory power in the beta (15-30Hz) band without functional 

improvement. These results suggest that in JP, specific motor and cognitive 

impairments are related to increased low-frequency oscillatory neuronal network 

activity. Zolpidem is unique amongst hypnotic drugs in its ability to desynchronize 

such pathological low-frequency activity, thereby restoring cognitive function. 



The family of ‘z drugs’ which includes zolpidem, zopiclone and zaleplon are 

non-benzodiazepine sedative/hypnotic agents usually prescribed (10-30mg) for 

insomnia9, 10, taking advantage of their fast absorption, short half-life and resultant 

limited duration of action.  However, over recent years there have been an 

increasing number of reports that have highlighted the paradoxical ability of sub-

sedative doses (2-5mg) of zolpidem to improve cognitive and motor ability for 

patients not only in persistent vegetative state1, but also in brain injury5, 7, idiopathic 

Parkinson’s disease11, drug-induced Parkinsonism3, and dementia4. 

 Previous single photon emission computed tomography (SPECT) studies 

have suggested that there is reduced regional blood perfusion in the affected brain 

area, with respect to the contralateral hemisphere, suggestive of diminished 

neuronal activity. Following administration of low-dose zolpidem, SPECT studies in 

a brain injured patient showed increased perfusion, implying recovery of cortical 

activity5. 

 Here we report results from participant JP, who suffered a major stroke 12 

years ago.  JP presented with fluent conversational speech but had difficulties 

comprehending specific words (a specific auditory-verbal deficit) with word finding 

difficulties and semantic paraphasias. Unilateral somatosensory diminution and 

abnormal gait were also observed. JP evinced marked cognitive and motor 

improvement in response to zolpidem (5mg), such that a single daily dose provided 

symptomatic relief beginning at approximately 40 minutes and lasting for up to 8 

hours, consistent with previous reports1, 5. In addition to symptomatic relief, 

previous psychometric assessment of JP suggested improvements in IQ as a 



consequence of zolpidem administration, although the specific nature of this 

amelioration was not identified. Similarly, initial SPECT imaging suggested a 

reduced cerebrovascular perfusion in posterior left temporal lobe, which was 

improved following zolpidem administration (Fig. 1a & b). These initial observations 

formed the starting-point for the studies on JP described below, the ultimate 

purpose of which was to determine the changes in brain activity underlying JP’s 

neurological deficits and, more importantly, to measure how network activity was 

modulated by zolpidem in relation to recovery of sensorimotor and cognitive 

function.  

We used a multimodal imaging approach, comprising magnetic resonance 

imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) to obtain 

structural and chemical information from stroke-affected and unaffected brain 

regions (Fig. 1c-g). Spatial information from these scans was used to guide 

subsequent magnetoencephalography (MEG) investigation through placement of 

‘virtual electrodes’ in anatomically defined loci to determine the profile of focal 

electrical activity across the cortex prior to, and following drug administration.  

Initial observations from 99mTc-hexamethylpropylene amine oxime (HMPAO) 

SPECT of reduced left temporal lobe perfusion (Fig. 1a), which were improved by 

zolpidem administration (Fig. 1b), were contextualized by the visualization of the 

left lateralized lesion using MRI (Fig 1c). A generalized partially parallel acquisition 

(GRAPPA) image of a T2-weighted scan of JP in the sagittal plane (Fig. 1d) 

revealed the extent of the left temporal lobe lesion, impinging on language and 

motor areas. Grey and white matter visualization was used to identify regions for 



further analysis within the lesion, the intact contralateral hemisphere and the lesion 

penumbra (denoted A, B and C respectively). Subsequently, using co-registration 

with the anatomical MRI12, these loci were investigated using MRS and MEG. MRS 

analysis of the lesion site revealed an absence of typical metabolic markers 

associated with viable brain tissue, such as N-acetyl-aspartate (NAA), creatine (Cr), 

choline (Ch) and myo-inositol (mI), although a lactate (Lac) peak, commonly seen 

in cerebrospinal fluid (CSF) could be seen (Fig. 1e). Investigation of the 

contralateral hemisphere revealed a typical chemical spectral profile, with normal 

ratios of NAA, Cr, Cho and mI (Fig. 1f). However, whilst the lesion penumbra 

location also showed relatively normal ratios of these metabolites, the spectrum 

was dominated by an abnormally high Lac peak (Fig. 1g), suggesting a degree of 

ongoing metabolic stress within neuronal populations close to the original lesion. 

MEG virtual electrode analysis, derived from the Synthetic Aperture 

Magnetometry (SAM) beamforming method13, was used to derive power-spectra 

from the voxels used in MRS analysis (1-60Hz). A MEG signal was not detectable 

in the lesion voxel (Fig. 1h), whereas the contralateral voxel was typified by a 

normal amplitude spectrum with moderate power across the low-frequency range 

(Fig. 1i). Analysis of the penumbral voxel revealed strikingly high power in the theta 

frequency range (peak 8Hz) superimposed on a high degree of broadband low-

frequency oscillatory activity (Fig. 1j). This pattern of slow wave activity, seen first in 

the lesion penumbra, was evident across all virtual electrode placements ipsilateral 

to the lesion, including the dorsolateral prefrontal cortex (DLPFC), parietal lobe, 

superior temporal lobe and sensorimotor cortex (SMC), and was not evident in 



contralateral electrodes. Furthermore, in the ipsilateral sensorimotor regions 

adjacent to the lesion an elevated beta frequency oscillation (peak 25Hz) was also 

evident (Fig. 2c & k).  

 

Figure 1 Here 

 

Double blind, placebo controlled pharmaco-MEG analyses of a 60 minute 

period following drug administration, used SAM techniques13, 14 to identify the 

spatial distribution of power change in delta (1-3Hz), theta (4-10Hz), alpha (7-

14Hz), beta (15-30Hz) and gamma (30-80Hz) frequency bands. This approach 

revealed a powerful desynchronizing effect of zolpidem on the enhanced theta and 

beta activity seen within ipsilateral cortex, in both language-associated (Fig.2a & e; 

Fig. 3b) and sensorimotor areas (Fig. 2c & f; Fig 3a). By contrast, we observed no 

effects of zolpidem on baseline low-frequency activity in electrodes placed 

contralateral to the lesion (Fig.2b & d). When we repeated these experiments using 

a placebo we observed no effects on MEG activity. Conversely, following zopiclone 

administration at sub-sedative dose (3.5 mg), we noted a striking, bilateral, 

broadband increase (Fig. 2g-l) in oscillatory activity in the beta frequency range 

(15-30 Hz), consistent with previous MEG observations using a similarly non-

specific GABAA receptor modulator15. These data indicate that 12 years following 

initial insult, neuronal tissue surrounding the original lesion continues to exhibit 

pathological behavior in the form of slow wave oscillations and also that zolpidem 

has a unique, desynchronizing effect that is specific to such activity. 



 

Figure 2 Here 

 

We next addressed the question of how focal desynchronization was related 

to cognitive and sensorimotor function in JP through MEG measures of language 

and motor function. The use of independent isometric contraction of the left and 

right hands afforded localization of respective contralateral SMC through peak beta 

frequency desynchronization (Fig. 3i) consistent with previous observations16. 

Similarly, category naming and covert letter fluency tasks were employed to 

localize language related areas through peak desynchronization (Fig. 3j & k), 

consistent with previous observations in the DLPFC17. These latter activations were 

key, since these tasks typify the language difficulty that JP exhibited under drug-

free conditions. We found a strong spatial and frequency domain correspondence 

between the zolpidem-induced (Fig. 3a & b) and functional desynchronization 

events (Fig. 3i-k), suggesting that zolpidem administration had direct functional 

consequences within modalities in which JP is compromised.  

With the aim of identifying the temporal profile of oscillatory changes that 

underlie the improvements in cognitive and sensorimotor performance, we 

implemented a virtual electrode reconstruction of discrete neuronal activity at the 

peaks of desynchronization in both the passively and functionally identified loci. 

This method is a measure of discrete neuronal activity18 resembling those made at 

the local field potential level19. We reconstructed the envelope of oscillatory power 

over the entire 60 minute duration following drug administration. This approach 



revealed that the abnormally high sensorimotor beta oscillations observed prior to 

drug uptake were persistent, and were chronically suppressed following zolpidem 

administration (Fig. 3c & f). Similarly, abnormally high and persistent theta 

oscillations observed in language performance areas such as DLPFC were also 

suppressed by zolpidem (Fig. 3d, e, g & h).  

 

Figure 3 Here 

 

The onset of these reductions in synchronous power occurred at 35-45 

minutes post drug administration, consistent with both JP’s self-reported 

improvements on language-related tasks and the pharmacokinetic profile of 

zolpidem. Neither the therapeutic benefit nor the associated desynchronization was 

observed following administration of zopiclone or placebo. Psychometric evaluation 

of JP used the WAIS-III22 to evaluate drug-enhanced cognitive performance, firstly 

with zolpidem and then 6 months later without zolpidem. Test-retest gains in 

performance across WAIS-III Index and IQ scores due to practice effects are well 

documented20. Therefore, the order of administration was chosen to underestimate 

rather than overestimate gains due to zolpidem. JP achieved highest scores on the 

Perceptual Organization Index, with scores falling in the top 12-18% of his age 

group. In the absence of zolpidem results revealed deterioration in performance 

across all Index and IQ scores with the exception of the Working Memory Index, 

which remained within the bottom 1% of the population across both test occasions. 

The greatest change was evident in the Verbal Comprehension Index and JP’s 



standardized score dropped by 27 percentile points, moving from the ‘average’ to 

the ‘low average’ range (Fig. 4); these observations were consistent with clinical 

presentation. 

 

Figure 4 Here 

 

In summary, in JP, a left temporal lesion resulted in an increase in 

pathological theta and beta frequency oscillatory power compared to the 

undamaged contralateral hemisphere. In sub-sedative doses, zolpidem was 

capable of suppressing pathological slow wave activity to a level that allowed 

functionality to return. It seems reasonable to infer that the action of zolpidem in 

brain injury is related to its unique dose-dependent selectivity for GABAA receptors 

containing the α-1 subunit. The desynchronizing effect of zolpidem may reflect the 

differential distribution of α-1 subunit containing GABAA receptors between specific 

interneuronal subtypes sub-serving oscillatory activity21. Consistent with this 

interpretation, non-selective GABAA receptor modulators such as lorazepam15 and 

zopiclone do not desynchronize neuronal network activity, indeed, oscillatory power 

is enhanced. 

Synchronization across extensive neuronal populations can result in a 

marked reduction in information transfer. Specifically, a broad elevation in the 

mutual information between cortical regions will reduce the capacity for 

computational processing. In this scenario, the consequent reduction in the 

complexity of information encoding would provide an explanation for the cognitive 



decline observed under pathological conditions.  Exaggerated slow wave activity is 

a feature common to a diverse array of neuropathologies, including traumatic brain 

injury22, stroke23, Alzheimer’s disease24, and schizophrenia25 and therefore may 

represent a biomarker for impaired CNS functionality. Desynchronization of 

pathological oscillatory activity appears to improve CNS function. For example, in 

Parkinson’s disease, dopamine replacement therapy has been demonstrated to 

reverse augmented beta activity, which correlates with symptomatic relief11, 26. 

Similarly, administration of dopamine agonists is efficacious in the treatment of 

brain injury27. Furthermore, following deep brain stimulation positive functional 

outcomes linked to a desynchronization of EEG oscillatory activity have been 

observed in persistent vegetative state28.  

It is widely accepted that event-related desynchronization (ERD) is a central 

phenomenon in normal brain activity29 and ERD has been established as a feature 

of sensorimotor16 and cognitive processing17. In JP, the high power and persistent 

nature of pathological oscillations appears to represent an obstacle to adequate 

ERD; this inability to desynchronize may represent a barrier to effective 

computation in neuronal networks. Here we show that drug induced suppression of 

this functional barrier affords a return of cognitive performance, typically associated 

with ERD. As previous evidence suggests, MEG is an optimal tool for the 

identification of slow wave activity22 as a biomarker of brain dysfunction. In addition, 

we would suggest that pharmaco-MEG represents a powerful method for the 

identification and development of future therapeutic interventions. 



In conclusion, given the involvement of pathological slow wave oscillatory 

activity in a wide range of neurological disorders, and the desynchronizing 

properties of zolpidem as measured using pharmaco-MEG, it seems reasonable to 

suggest that zolpidem treatment might prove to have a broad therapeutic remit. 

 

Methods Summary 

Our participant, JP, presented with sensorimotor and language deficits 

following major stroke, which were reported to improve following single daily 

administration of zolpidem. SPECT analysis was used to determine regional 

perfusion with and without zolpidem. We used structural MRI scans to determine 

the spatial extent of the lesion and to obtain detailed anatomical information for 

functional co-registration. Voxels were identified with the left temporal lesion, the 

lesion penumbra and comparative location contralateral to the lesion. These three 

voxels were examined using MRS and MEG to identify the chemical composition 

and power spectra respectively. 

JP was tested using a double blind drug study over three days to examine 

the effects, over a 60 minute period, of zolpidem (5mg), zopiclone (3.5mg) and 

placebo on intrinsic oscillatory activity across the cortex. MEG data were co-

registered with JP’s anatomical MRI12 and analysis was performed using a SAM 

beamforming method13, 14 to identify peaks of synchronous power change in 

response to each of the drugs administered. Additionally, a number of functional 

tasks were used to localize sensorimotor and language related areas16, 17.  



At the peaks of oscillatory power change, identified from SAM analysis, 

virtual electrodes were implemented in order to identify the power spectra at the 

loci pre and post drug. Furthermore, the electrical signals from these loci were 

band-pass filtered to the peak frequencies in the theta and beta ranges and the 

envelope of the oscillatory power30 reconstructed for the 60 minute duration 

following drug administration. In order to establish the exact nature of JP’s cognitive 

impairments and improvements following zolpidem, a comprehensive psychometric 

evaluation was performed using the WAIS-III. These were undertaken firstly with 

zolpidem and then 6 months later without zolpidem, to account for potential practice 

effects. 
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Figure Legends 
 

Figure 1 ⏐ Characterization of pathology. SPECT analysis showing cerebral 
blood perfusion (a) before and (b) after zolpidem; white boxes indicate left temporal 
region where perfusion is increased. MRI images showing the extent of the lesion 
in the left hemisphere in (c) a T1 weighted sagittal section and (d) T2 weighted 
axial section; red boxes (A, B & C) indicate lesion, contralateral control and lesion 
penumbra voxels used for subsequent MRS and MEG analyses. MRS analysis of 
voxels identified from MRI (e, f & g derived from A, B & C respectively); 
abbreviated annotations indicate chemical markers observed. MEG analysis of 
voxels A, B & C (h, i & j respectively), showing power spectral analyses (0-60Hz).  
 

Figure 2⏐ Drug induced oscillatory modulation. Results of SAM analyses 
indicating the spatial distribution of oscillatory power change as a consequence of 
zolpidem (a & b) and zopiclone (k & l) administration; blue indicates a reduction 
and orange an increase in oscillatory power. a, theta desynchronization and b, beta 
desynchronization following zolpidem administration. Power spectral change in left 
and right DLPFC (c & d) and left and right SMC (e & f) pre and post zolpidem 
administration. Beta synchronization bilaterally in frontal cortex (k) and SMC (l), pre 
and post zopiclone administration. Power spectral change bilaterally in DLPFC (g & 
h) and SMC (I & j), pre and post zopiclone administration. 
 

Figure 3 ⏐ Pharmacodynamic profile of zolpidem induced desynchronization. 
SAM and images co-registered with the 3-dimensional MRI and band-pass filtered 
virtual electrode traces recorded for 60 minutes post zolpidem administration. 
Distribution and time-course of desynchronization in the beta (a & c) and theta (b, d 
& e) frequencies. Event-related desynchronization (ERD) in the beta range in 
response to contraction of the right hand (i) and in the theta range in response to 
category naming (j) and covert letter fluency tasks. Virtual Electrode analysis 
indicates the electrical activity at these peak ERD loci over the 60 minutes duration, 
band-pass filtered to beta (f) and theta (g & h). Red lines denote onset of zolpidem-
induced cognitive and motor improvements. 
 

Figure 4 ⏐ Psychometric analysis of zolpidem mediated improvement. Bar 
chart reflecting the results of JP’s WAIS-III assessments carried out with zolpidem 
(blue) and without zolpidem (red). Scores are age-standardized and displayed as 
percentiles. 
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