253 research outputs found

    Assessment of endometrial and ovarian characteristics using three dimensional power Doppler ultrasound to predict response in frozen embryo transfer cycles

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To evaluate whether endometrial or ovarian parameters as measured using 3D power Doppler ultrasound would predict the outcome in frozen embryo transfer (FET) cycles.</p> <p>Methods</p> <p>Thirty women with no known gynecological pathology undergoing FET were recruited. The FET was carried out in the natural menstrual cycle 3-4 days after the first positive LH test result. Blood samples for hormonal analysis were collected, and three-dimensional (3D) ultrasonographic examination was performed on the day of the FET and repeated with analysis of the total hCG one week later.</p> <p>Results</p> <p>The demographic, clinical, and embryological characteristics were similar between the pregnant (15/30) and nonpregnant groups (15/30). There were no differences between the groups in endometrial/subendometrial thickness, volume, or vascularization index (VI). The endometrial triple-line pattern was more often present in the pregnant group on the day of the FET (93.3% vs. 40.0%, 95% CI 25.5-81.2%). No differences in the ovaries were observed on the day of the FET. At the second visit, the triple-line pattern was still more often present in those patients who had conceived (91.7% vs. 42.9%, 95% CI 18.5-79.1%), and their corpus luteum was more active as judged by the rise in 17-hydroxyprogesterone and estradiol levels. No differences were observed in the dominant ovarian vasculature.</p> <p>Conclusions</p> <p>According to our results, measurement of power Doppler indices using 3D ultrasound on the day of the FET does not provide any additional information concerning the outcome of the cycle. The existence of the triple-line pattern on the day of the FET seems to be a prognostic sign of a prosperous outcome after FET. The dominant ovary in the pregnant group seems to be already activated one week after the FET.</p

    In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers

    Get PDF
    The research was supported by the Government of the RF (grant 14.Z50.31.0004 to support scientific research projects implemented under the supervision of leading scientists)

    SRG/ART-XC discovery of SRGA J204318.2+443815: Towards the complete population of faint X-ray pulsars

    Get PDF
    We report the discovery of the new long-period X-ray pulsar SRGA J204318.2+443815/SRGe J204319.0+443820 in a Be binary system. The source was found in the second all-sky survey by the Mikhail Pavlinsky ART-XC telescope on board the SRG mission. The followup observations with XMM-Newton, NICER, and NuSTAR allowed us to discover a strong coherent signal in the source light curve with a period ofΒ ~742 s. The pulsed fraction was found to depend on an increase in energy from ~20% in soft X-rays to >50% at high energies, as is typical for X-ray pulsars. The source has a quite hard spectrum with an exponential cutoff at high energies and a bolometric luminosity of Lx ≃ 4 x 1035 erg s-1. The X-ray position of the source is found to be consistent with the optical transient ZTF18abjpmzf, located at a distance of ~8.0 kpc. Dedicated optical and infrared observations with the RTT-150, NOT, Keck, and Palomar telescopes revealed a number of emission lines (HΞ±, He I, and the Paschen and Braket series) with a strongly absorbed continuum. According to the SRG scans and archival XMM-Newton data, the source flux is moderately variable (by a factor of 4-10) on timescales of several months and years. All this suggests that SRGA J204318.2+443815/SRGe J204319.0+443820 is a new quasipersistent low-luminosity X-ray pulsar in a distant binary system with a Be-star of the B0-B2e class. Thus the SRG observatory allowed us to unveil a hidden population of faint objects, including a population of slowly rotating X-ray pulsars in Be systems.</p

    Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2Ξ², an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana

    Get PDF
    Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2Ξ²) in two heterologous systems, i.e. the yeast Saccharomycescerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2Ξ² rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Ξ”) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2Ξ² under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2Ξ² in plant stress responses

    Survival in amoeba: a major selection pressure on the presence of bacterial copper and zinc resistance determinants?: identification of a "copper pathogenicity island"

    Get PDF
    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs

    5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    Get PDF
    YesMammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.This study was supported by the grants 5R01AR064580 and 1RO1AR071727 to VAB, TKS and AAS, as well as by the grants from MRC (MR/ M010015/1) and BBSRC (BB/K010050/1) to VAB

    Rescue of replication failure by Fanconi anaemia proteins

    Get PDF
    Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms

    Global burden of peripheral artery disease and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Peripheral artery disease is a growing public health problem. We aimed to estimate the global disease burden of peripheral artery disease, its risk factors, and temporospatial trends to inform policy and public measures. Methods: Data on peripheral artery disease were modelled using the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2019 database. Prevalence, disability-adjusted life years (DALYs), and mortality estimates of peripheral artery disease were extracted from GBD 2019. Total DALYs and age-standardised DALY rate of peripheral artery disease attributed to modifiable risk factors were also assessed. Findings: In 2019, the number of people aged 40 years and older with peripheral artery disease was 113 million (95% uncertainty interval [UI] 99Β·2–128Β·4), with a global prevalence of 1Β·52% (95% UI 1Β·33–1Β·72), of which 42Β·6% was in countries with low to middle Socio-demographic Index (SDI). The global prevalence of peripheral artery disease was higher in older people, (14Β·91% [12Β·41–17Β·87] in those aged 80–84 years), and was generally higher in females than in males. Globally, the total number of DALYs attributable to modifiable risk factors in 2019 accounted for 69Β·4% (64Β·2–74Β·3) of total peripheral artery disease DALYs. The prevalence of peripheral artery disease was highest in countries with high SDI and lowest in countries with low SDI, whereas DALY and mortality rates showed U-shaped curves, with the highest burden in the high and low SDI quintiles. Interpretation: The total number of people with peripheral artery disease has increased globally from 1990 to 2019. Despite the lower prevalence of peripheral artery disease in males and low-income countries, these groups showed similar DALY rates to females and higher-income countries, highlighting disproportionate burden in these groups. Modifiable risk factors were responsible for around 70% of the global peripheral artery disease burden. Public measures could mitigate the burden of peripheral artery disease by modifying risk factors. Funding: Bill & Melinda Gates Foundation

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development
    • …
    corecore