22 research outputs found

    Tests of continuous concrete slabs reinforced with basalt fibre reinforced plastic bars

    Get PDF
    yesThis paper presents experimental results of three continuously supported concrete slabs reinforced with basalt-fibre-reinforced polymer (BFRP) bars. Three different BFRP reinforcement combinations of over and under reinforcement ratios were applied at the top and bottom layers of continuous concrete slabs tested. One additional concrete continuous slab reinforced with steel bars and two simply supported slabs reinforced with under and over BFRP reinforcements were also tested for comparison purposes. All slabs sections tested had the same width and depth but different amounts of BFRP reinforcement. The experimental results were used to validate the existing design guidance for the predictions of moment and shear capacities, and deflections of continuous concrete elements reinforced with BFRP bars. The continuously supported BFRP reinforced concrete slabs illustrated wider cracks and larger deflections than the control steel reinforced concrete slab. All continuous BFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. ACI 440-1R-15 equations give reasonable predictions for the deflections of continuous slabs (after first cracking) but stiffer behaviour for the simply supported slabs, whereas CNR DT203 reasonably predicted the deflections of all BFRP slabs tested. On the other hand, ISIS-M03-07 provided the most accurate shear capacity prediction for continuously supported BFRP reinforced concrete slabs among the current shear design equations

    Examination at a Material and Structural Level of the Fatigue Life of Beams Strengthened with Mineral or Epoxy Bonded FRPs: The State of the Art

    Full text link
    This paper presents a state of the art review of different material combinations and applications of mineral-based and epoxy-based bonded Fiber Reinforced Polymers (FRP), used for the strengthening of concrete structures subjected to fatigue loading. In this review, models of the fatigue life at the material and structural level are presented. This study examines the mechanical behavior of the FRP-material, surface bonding behavior and concrete beams strengthened under fatigue loading with different types of FRP-systems. The parameters that are investigated are applied load value, time dependent effects, type of strengthened structures (shear, flexural or combined) and the configuration of sheets or plates. The building codes and researchers' recommendations are also discussed. As a result of this review, the reader will obtains an overview of suitable materials and methods for strengthening structures subjected to fatigue loading by referring to the estimated fatigue life of material and strengthening structures at various applied stress levels.Validerad; 2013; 20130823 (thojoh
    corecore