323 research outputs found

    Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy

    Get PDF
    Objective: The hypersynchronous neuronal activity associated with epilepsy causes widespread functional network disruptions extending beyond the epileptogenic zone. This altered network topology is considered a mediator for non-seizure symptoms, such as cognitive impairment. The aim of this study was to investigate functional network alterations in focal epilepsy patients with good seizure control and high quality of life. Methods: We compared twenty-two focal epilepsy patients and sixteen healthy controls on graph metrics derived from functional connectivity of source-level resting-state EEG. Graph metrics were calculated over a range of network densities in five frequency bands. Results: We observed a significantly increased small world index in patients relative to controls. On the local level, two left-hemisphere regions displayed a shift towards greater alpha band "hubness". The findings were not mediated by age, sex or education, nor by age of epilepsy onset, duration or focus lateralisation. Conclusions: Widespread functional network alterations are evident in focal epilepsy, even in a cohort characterised by successful anti-seizure medication therapy and high quality of life. These findings might support the position that functional network analysis could hold clinical relevance for epilepsy. Significance: Focal epilepsy is accompanied by global and local functional network aberrancies which might be implied in the sustenance of non-seizure symptoms. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Functional Myogenic Engraftment from Mouse iPS Cells

    Get PDF
    Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies

    Emerging pneumococcal carriage serotypes in a high-risk population receiving universal 7-valent pneumococcal conjugate vaccine and 23-valent polysaccharide vaccine since 2001

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Australia in June 2001, a unique pneumococcal vaccine schedule commenced for Indigenous infants; seven-valent pneumococcal conjugate vaccine (7PCV) given at 2, 4, and 6 months of age and 23-valent pneumococcal polysaccharide vaccine (23PPV) at 18 months of age. This study presents carriage serotypes following this schedule.</p> <p>Methods</p> <p>We conducted cross sectional surveys of pneumococcal carriage in Aboriginal children 0 to 6 years of age living in remote Aboriginal communities (RACs) in 2003 and 2005. Nasal secretions were collected and processed according to published methods.</p> <p>Results</p> <p>902 children (mean age 25 months) living in 29 communities in 2003 and 818 children (mean age 35 months) in 17 communities in 2005 were enrolled. 87% children in 2003 and 96% in 2005 had received two or more doses of 7PCV. From 2003 to 2005, pneumococcal carriage was reduced from 82% to 76% and reductions were apparent in all age groups; 7PCV-type carriage was reduced from 11% to 8%, and 23PPV-non-7PCV-type carriage from 31% to 25% respectively. Thus non-23PPV-type carriage increased from 57% to 67%. All these changes were statistically significant, as were changes for some specific serotypes. Shifts could not be attributed to vaccination alone. The top 10 of 40 serotypes identified were (in descending order) 16F, 19A, 11A, 6C, 23B, 19F, 6A, 35B, 6B, 10A and 35B. Carriage of penicillin non-susceptible (MIC > = 0.12 μg/mL) strains (15% overall) was detected in serotypes (descending order) 19A, 19F, 6B, 16F, 11A, 9V, 23B, and in 4 additional serotypes. Carriage of azithromycin resistant (MIC > = 2 μg/mL) strains (5% overall), was detected in serotypes (descending order) 23B, 17F, 9N, 6B, 6A, 11A, 23F, and in 10 additional serotypes including 6C.</p> <p>Conclusion</p> <p>Pneumococcal carriage remains high (~80%) in this vaccinated population. Uptake of both pneumococcal vaccines increased, and carriage was reduced between 2003 and 2005. Predominant serotypes in combined years were 16F, 19A, 11A, 6C and 23B. Antimicrobial non-susceptibility was detected in these and 17 additional serotypes. Shifts in serotype-specific carriage suggest a need more research to clarify the association between pneumococcal vaccination and carriage at the serotype level.</p

    Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility.</p> <p>Methods</p> <p>We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls.</p> <p>Results</p> <p>The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect.</p> <p>Conclusion</p> <p>Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations.</p

    Perspectives on the chemical etiology of breast cancer.

    Get PDF
    Multiple factors, known and unknown, contribute to human breast cancer. Hereditary, hormonal, and reproductive factors are associated with risk of breast cancer. Environmental agents, including chemical carcinogens, are modifiable risk factors to which over 70% of breast cancers have been attributed. Polymorphisms of drug-metabolizing enzymes may influence risk of breast cancer from environmental chemicals, dietary agents, and endogenous steroids. The environmental factors discussed in this review include pollutants, occupational exposures, tobacco smoke, alcohol, and diet. Aromatic amines are discussed as potential mammary carcinogens, with a focus on heterocyclic amine food pyrolysis products. These compounds are excreted into the urine after consumption of meals containing cooked meats and have recently been detected in the breast milk of lactating women

    Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming

    Get PDF
    Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15–20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells

    Generation of Induced Pluripotent Stem Cells from CD34+ Cells across Blood Drawn from Multiple Donors with Non-Integrating Episomal Vectors

    Get PDF
    The methodology to create induced pluripotent stem cells (iPSCs) affords the opportunity to generate cells specific to the individual providing the host tissue. However, existing methods of reprogramming as well as the types of source tissue have significant limitations that preclude the ability to generate iPSCs in a scalable manner from a readily available tissue source. We present the first study whereby iPSCs are derived in parallel from multiple donors using episomal, non-integrating, oriP/EBNA1-based plasmids from freshly drawn blood. Specifically, successful reprogramming was demonstrated from a single vial of blood or less using cells expressing the early lineage marker CD34 as well as from unpurified peripheral blood mononuclear cells. From these experiments, we also show that proliferation and cell identity play a role in the number of iPSCs per input cell number. Resulting iPSCs were further characterized and deemed free of transfected DNA, integrated transgene DNA, and lack detectable gene rearrangements such as those within the immunoglobulin heavy chain and T cell receptor loci of more differentiated cell types. Furthermore, additional improvements were made to incorporate completely defined media and matrices in an effort to facilitate a scalable transition for the production of clinic-grade iPSCs
    corecore