46 research outputs found
Historical greenhouse gas concentrations for climate modelling (CMIP6)
Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800 000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3 ppm, CH4 at 808.2 ppb and N2O at 273.0 ppb. The data are available at https://esgfnode.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality)
Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake
Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties
Africa and the global carbon cycle
The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century
420,000 year assessment of fault leakage rates shows geological carbon storage is secure
Carbon capture and storage (CCS) technology is routinely cited as a cost effective tool for climate change mitigation. CCS can directly reduce industrial CO2 emissions and is essential for the retention of CO2 extracted from the atmosphere. To be effective as a climate change mitigation tool, CO2 must be securely retained for 10,000 years (10 ka) with a leakage rate of below 0.01% per year of the total amount of CO2 injected. Migration of CO2 back to the atmosphere via leakage through geological faults is a potential high impact risk to CO2 storage integrity. Here, we calculate for the first time natural leakage rates from a 420 ka paleo-record of CO2 leakage above a naturally occurring, faulted, CO2 reservoir in Arizona, USA. Surface travertine (CaCO3) deposits provide evidence of vertical CO2 leakage linked to known faults. U-Th dating of travertine deposits shows leakage varies along a single fault and that individual seeps have lifespans of up to 200 ka. Whilst the total volumes of CO2 required to form the travertine deposits are high, time-averaged leakage equates to a linear rate of less than 0.01%/yr. Hence, even this natural geological storage site, which would be deemed to be of too high risk to be selected for engineered geologic storage, is adequate to store CO2 for climate mitigation purposes
Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models
Some Algebraic Techniques for obtaining Low-temperature Series Expansions
It is shown that low-temperature series expansions for lattice models in statistical mechanics can be obtained from a consideration of only connected strong subgraphs of the lattice. This general result is used as the basis of a linked-cluster form of the method of partial generating functions and also as the basis for extending the finite lattice method of series expansion to low-temperature series.</jats:p
Series Analysis of a Three-state Potts Model with Three-site Interactions
Series expansions are used to investigate a three-state Potts model which has two-site interactions on the bonds of a triangular lattice and three-site interactions on alternate triangles. Although some of the exponent estimates show variations with interaction strengths, the assumption of scaling constrains the permitted exponent values to such an extent that the possible variations lie within the ranges of uncertainty of individual exponent estimates.</jats:p
High-field Polynomial Expansions for the Six-state Planar Potts Model
High-field polynomial expansions (through order 9) are derived for the six-state planar Potts model and analysed. Suggestive evidence is found for an intermediate phase in which the exponent 0 varies continuously as a function of temperature. This behaviour is consistent with recent results predicting that the model exhibits two transitions separating a 'topologically ordered' phase analogous to that found in the planar rotor model.</jats:p
