73 research outputs found

    A method to measure vacuum birefringence at FCC-ee

    Full text link
    It is well-known that the Heisenberg-Euler-Schwinger effective Lagrangian predicts that a vacuum with a strong static electromagnetic field turns birefringent. We propose a scheme that can be implemented at the planned FCC-ee, to measure the nonlinear effect of vacuum birefringence in electrodynamics arising from QED corrections. Our scheme employs a pulsed laser to create Compton backscattered photons off a high energy electron beam, with the FCC-ee as a particularly interesting example. These photons will pass through a strong static magnetic field, which changes the state of polarization of the radiation - an effect proportional to the photon energy. This change will be measured by the use of an aligned single-crystal, where a large difference in the pair production cross-sections can be achieved. In the proposed experimental setup the birefringence effect gives rise to a difference in the number of pairs created in the analyzing crystal, stemming from the fact that the initial laser light has a varying state of polarization, achieved with a rotating quarter wave plate. Evidence for the vacuum birefringent effect will be seen as a distinct peak in the Fourier transform spectrum of the pair-production rate signal. This tell-tale signal can be significantly above background with only few hours of measurement, in particular at high energies.Comment: Presented by UIU at the International Symposium on "New Horizons in Fundamental Physics: From Neutrons Nuclei via Superheavy Elements and Supercritical Fields to Neutron Stars and Cosmic Rays," held to honor Walter Greiner on his 80th birthday at Makutsi Safari Farm, South Africa, November 23-29, 201

    CP properties of symmetry-constrained two-Higgs-doublet models

    Get PDF
    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.Comment: 14 pages, 2 tables, revised version adapted to the journal publicatio

    Higgs boson decay into 2 photons in the type~II Seesaw Model

    Get PDF
    We study the two photon decay channel of the Standard Model-like component of the CP-even Higgs bosons present in the type II Seesaw Model. The corresponding cross-section is found to be significantly enhanced in parts of the parameter space, due to the (doubly-)charged Higgs bosons' (H±±)H±(H^{\pm \pm})H^\pm virtual contributions, while all the other Higgs decay channels remain Standard Model(SM)-like. In other parts of the parameter space H±±H^{\pm \pm} (and H±H^{\pm}) interfere destructively, reducing the two photon branching ratio tremendously below the SM prediction. Such properties allow to account for any excess such as the one reported by ATLAS/CMS at 125\approx 125 GeV if confirmed by future data; if not, for the fact that a SM-like Higgs exclusion in the diphoton channel around 114-115 GeV as reported by ATLAS, does not contradict a SM-like Higgs at LEP(!), and at any rate, for the fact that ATLAS/CMS exclusion limits put stringent lower bounds on the H±±H^{\pm \pm} mass, particularly in the parameter space regions where the direct limits from same-sign leptonic decays of H±±H^{\pm \pm} do not apply.Comment: 26 pages, 7 figure

    Physics Opportunities of e+e- Linear Colliders

    Get PDF
    We describe the anticipated experimental program of an e+e- linear collider in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current collider designs and the expected experimental environment. We then discuss precision studies of the W boson and top quark. Finally, we review the range of models proposed to explain the physics of electroweak symmetry breaking and show, for each case, the central role that the linear collider experiments will play in elucidating this physics. (to appear in Annual Reviews of Nuclear and Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde

    PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models

    Full text link
    The topcolor-assisted technicolor (TC2) model predicts some light pseudo goldstone bosons (PGBs), which may be accessible at the LHC or ILC. In this work we study the pair productions of the charged or neutral PGBs at the LHC and ILC. For the productions at the LHC we consider the processes proceeding through gluon-gluon fusion and quark-antiquark annihilation, while for the productions at the ILC we consider both the electron-positron collision and the photon-photon collision. We find that in a large part of parameter space the production cross sections at both colliders can be quite large compared with the low standard model backgrounds. Therefore, in future experiments these productions may be detectable and allow for probing TC2 model.Comment: 26 pages, 16 figures. slight changes in the text; notations for curves changed; references adde

    Symmetries and renormalisation in two-Higgs-doublet models

    Get PDF
    We discuss the classification of symmetries and the corresponding symmetry groups in the two-Higgs-doublet model (THDM). We give an easily useable method how to determine the symmetry class and corresponding symmetry group of a given THDM Higgs potential. One of the symmetry classes corresponds to a Higgs potential with several simultaneous generalised CP symmetries. Extending the CP symmetry of this class to the Yukawa sector in a straightforward way, the so-called maximally-CP-symmetric model (MCPM) is obtained. We study the evolution of the quartic Higgs-potential parameters under a change of renormalisation point. Finally we compute the so called oblique parameters S, T, and U, in the MCPM and we identify large regions of viable parameter space with respect to electroweak precision measurements. We present the corresponding allowed regions for the masses of the physical Higgs bosons. Reasonable ranges for these masses, up to several hundred GeV, are obtained which should make the (extra) Higgs bosons detectable in LHC experiments.Comment: 16 pages, 2 figure

    Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet models

    Get PDF
    After the recent discovery of a Higgs-like boson, the possibility of an enlarged scalar sector arises as a natural question. Experimental searches for charged scalars have been already performed with negative results. We analyze the phenomenology associated with a fermiophobic charged Higgs (it does not couple to fermions at tree level), in two-Higgs-doublet models. All present experimental bounds are evaded trivially in this case, and one needs to consider other decay and production channels. We study the associated production of a charged Higgs with either a W or a neutral scalar boson, and the relevant decays for a light fermiophobic charged Higgs. The interesting features of this scenario should result encouraging for the LHC collaborations to perform searches for such a particle
    corecore