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Symmetries and renormalisation in two-Higgs-doublet models
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We discuss the classification of symmetries and the corresponding symmetry groups in the two-
Higgs-doublet model (THDM). We give an easily useable method how to determine the symmetry
class and corresponding symmetry group of a given THDM Higgs potential. One of the symmetry
classes corresponds to a Higgs potential with several simultaneous generalised CP symmetries. Ex-
tending the CP symmetry of this class to the Yukawa sector in a straightforward way, the so-called
maximally-CP-symmetric model (MCPM) is obtained. We study the evolution of the quartic Higgs-
potential parameters under a change of renormalisation point. Finally we compute the so called
oblique parameters S, T , and U , in the MCPM and we identify large regions of viable parameter
space with respect to electroweak precision measurements. We present the corresponding allowed
regions for the masses of the physical Higgs bosons. Reasonable ranges for these masses, up to
several hundred GeV, are obtained which should make the (extra) Higgs bosons detectable in LHC
experiments.

1. INTRODUCTION

In today’s particle physics one of the main hunting grounds of theorists and experimentalists alike are scalars. In
the Standard Model (SM) we have as scalar one Higgs-boson doublet field, playing an essential role. It is supposed to
be responsible for electroweak symmetry breaking thereby giving mass to the W and Z bosons as well as to quarks and
leptons. However, more complicated Higgs sectors are by no means excluded experimentally. On the contrary, there
are good theoretical reasons for more than one Higgs-boson doublet field. Extended Higgs sectors are, for instance,
required in supersymmetric models; see for instance [1–6], and in many models trying to solve the so called strong CP
problem [7, 8].

One simple extension of the SM scalar sector has two Higgs-boson doublet fields. This two-Higgs-doublet
model (THDM) has been studied extensively in the literature; see [9–33] and references therein. In our group we have,
in particular, emphasised the usefulness of gauge-invariant bilinears for studying properties of THDMs and we have
introduced a special THDM, the maximally CP-symmetric model (MCPM) which may give some understanding of the
family structure and the fermion mass hierarchies observed in Nature [34]. Predictions of the MCPM for high-energy
proton–antiproton and proton–proton collisions were presented in [35–37].

THDM’s with additional symmetries were studied in [38–40]. A review of the relation between the usual field
formalism and the geometric picture for THDMs working with field bilinears was given in [41].

In the present work we make some remarks concerning symmetries and the corresponding groups for THDMs. We
discuss the renormalisation procedure in view of the symmetry constraints on the potential parameters. As an explicit
example we treat the renormalisation of the dimension-four couplings in the MCPM. Finally we calculate the so called
oblique parameters S, T , U [42] for the MCPM. Comparing with electroweak precision data we derive restrictions on
the masses of the (extra compared to the SM) Higgs bosons for the MCPM.

2. THE BILINEAR FORMALISM

We consider models with the particle content as in the SM but with two Higgs-boson doublets

ϕi(x) =

(
ϕ+
i (x)

ϕ0
i (x)

)
, (1)
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where i = 1, 2. Both doublets are assigned weak hypercharge y = 1/2. We use the conventions for kinematics etc.
as in [34]. The most general gauge invariant and renormalisable potential of the THDM may be written in terms of
fields as [16]

V (ϕ1, ϕ2) = m2
11(ϕ†1ϕ1) +m2

22(ϕ†2ϕ2)−m2
12(ϕ†1ϕ2)− (m2

12)∗(ϕ†2ϕ1)

+
λ1
2

(ϕ†1ϕ1)2 +
λ2
2

(ϕ†2ϕ2)2 + λ3(ϕ†1ϕ1)(ϕ†2ϕ2) + λ4(ϕ†1ϕ2)(ϕ†2ϕ1) +
1

2
[λ5(ϕ†1ϕ2)2 + λ∗5(ϕ†2ϕ1)2]

+ [λ6(ϕ†1ϕ2) + λ∗6(ϕ†2ϕ1)](ϕ†1ϕ1) + [λ7(ϕ†1ϕ2) + λ∗7(ϕ†2ϕ1)](ϕ†2ϕ2) ,

(2)

with m2
11, m2

22, λ1,2,3,4 real, m2
12, λ5,6,7 complex. To study the properties of the Higgs potential, it is convenient

to write it in terms of field bilinears [26–29]. In [26, 27] a one-to-one correspondence of bilinear gauge-invariant
expressions with a Minkowski-type four vector was revealed leading to a simple geometric interpretation. We arrange
the fields ϕi of (1) in a 2× 2 matrix

φ(x) =

(
ϕ+
1 (x) ϕ0

1(x)

ϕ+
2 (x) ϕ0

2(x)

)
(3)

and define the hermitian, positive semi definite, 2× 2 matrix

K(x) := φ(x)φ†(x) =

(
ϕ†1(x)ϕ1(x) ϕ†2(x)ϕ1(x)

ϕ†1(x)ϕ2(x) ϕ†2(x)ϕ2(x)

)
. (4)

Its decomposition reads

K(x) =
1

2
(K0(x)12 + K(x)σ) (5)

with Pauli matrices σa (a = 1, 2, 3). In this way one defines the real bilinears

K0(x) = ϕ†1ϕ1 + ϕ†2ϕ2, K1(x) = ϕ†1ϕ2 + ϕ†2ϕ1, K2(x) = iϕ†2ϕ1 − iϕ†1ϕ2, K3(x) = ϕ†1ϕ1 − ϕ†2ϕ2 . (6)

We have

K0(x) ≥ 0, (K0(x))
2 − (K(x))

2 ≥ 0. (7)

In terms of these bilinears the general THDM potential (2) can be written in the simple form

V (ϕ1, ϕ2) = ξ0K0(x) + ξT K(x) + η00K
2
0 (x) + 2K0(x)ηT K(x) + KT(x)EK(x) , (8)

with K(x) = (K1(x),K2(x),K3(x))T and parameters ξ0, η00, three-component vectors ξ, η and the 3 × 3 matrix
E = ET. All parameters in (8) are real. The translation from the conventional parameters to the bilinear parameters
is

ξ0 =
1

2
(m2

11 +m2
22) , ξ =

1

2

−2Re(m2
12)

2Im(m2
12)

m2
11 −m2

22

 ,

η00 =
1

8
(λ1 + λ2) +

1

4
λ3 , η =

1

4

 Re(λ6 + λ7)

−Im(λ6 + λ7)
1
2 (λ1 − λ2)

 ,

E =
1

4

λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7)

−Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7)

Re(λ6 − λ7) −Im(λ6 − λ7) 1
2 (λ1 + λ2)− λ3

 .

(9)

We also define the 4× 4 matrix of the parameters corresponding to the potential terms quadratic in the bilinears,

Ẽ =

(
η00 ηT

η E

)
=


η00 η01 η02 η03
η01 η11 η12 η13
η02 η12 η22 η23
η03 η13 η23 η33

 . (10)
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Since both Higgs doublets carry the same quantum numbers we may also consider the unitarily mixed fields(
ϕ1(x)

ϕ2(x)

)
→

(
ϕ′1(x)

ϕ′2(x)

)
= U

(
ϕ1(x)

ϕ2(x)

)
, (11)

with U = (Uij) ∈ U(2). For the bilinears a basis, or Higgs-family, transformation (11) of the fields corresponds to a
SO(3) rotation given by

K0(x)→ K ′0(x) = K0(x),

K(x)→ K′(x) = R(U) K(x) .
(12)

Here R(U) is obtained from

U†σaU = Rab(U)σb. (13)

We note that every proper rotation matrix R ∈ SO(3) is a rotation about an axis and can be represented, in a suitable
basis, as

Rα =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 , (14)

where α is the angle of rotation.
We shall also consider generalized CP (GCP) transformations [18, 19, 43–48], where

ϕi(x)→ Uijϕ
∗
j (x
′), i, j = 1, 2 , x = (x0,x), x′ = (x0,−x) (15)

with U = (Uij) ∈ U(2). Note that the ordinary CP transformation is the special case of U = 12 in (15). In K space
the generalized CP transformations (15) correspond to the improper rotations [30, 31]

K0(x)→ K0(x′),

K(x)→ K′(x′) = R̄(U) K(x′).
(16)

Here

R̄(U) = R(U)R̄2 (17)

with R̄2 the matrix for reflection on the 1–3 plane. We define the matrices R̄j (j = 1, 2, 3) for the reflections on the
coordinate planes in K space as

R̄1 = diag(−1, 1, 1), R̄2 = diag(1,−1, 1), R̄3 = diag(1, 1,−1). (18)

Here and in the following proper rotation matrices will be denoted by R, Rα, etc., improper rotation matrices by R̄,
R̄j , R̄α, etc. By a suitable basis choice we can always arrange that the improper rotation matrix R̄(U) has the form

R̄α =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 −1

 , with 0 ≤ α ≤ π . (19)

Note that for α = 0 we get the GCP transformation corresponding to a reflection on the 1–2 plane in K space
(R̄(U) = R̄3) accompanied by the space-time transformation x → x′. A basis transformation (12) exchanging the 2
and 3 axes in K space shows that this is equivalent to the standard CP transformation where R̄(U) = R̄2 in (16).
For more details on GCPs in THDMs see [30, 31, 40].

Finally we recall from [27] that a transformation (12) in K space with R ∈ SO(3) always corresponds to a field
transformation (11) which is unique up to gauge transformations. Similarly, a K-space transformation (16) with
R̄ ∈ O(3), det(R̄) = −1, always corresponds to a GCP transformation (15) of the fields which is unique up to gauge
transformations.
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symmetry class and group G constraints on ξ and η constraints on E

Z2 {13, R̄1, R̄2, R̄1R̄2}

{
ξ × e3 = 0, η × e3 = 0, (ξ,η) 6= (0, 0)

ξ1 = 0, η1 = 0, ξ × η = 0, (ξ,η) 6= (0, 0)

all µi different

µ1 6= µ2 = µ3

U(1) {R2θ, R2θR̄2}

{
ξ × e3 = 0, η × e3 = 0, (ξ,η) 6= (0, 0)

ξ × η = 0, (ξ,η) 6= (0, 0)

µ1 = µ2 6= µ3

µ1 = µ2 = µ3

SO(3) {R,RR̄2} ξ = 0, η = 0 µ1 = µ2 = µ3

CP1 {13, R̄2}


ξ2 = 0, η2 = 0, (ξ1, η1) 6= (0, 0), (ξ3, η3) 6= (0, 0)

ξ2 = 0, η2 = 0, ξ × η 6= 0

(ξ3, η3) 6= (0, 0), (ξ × η) · e3 = 0, (ξ − ξ3e3,η − η3e3) 6= (0, 0)

ξ × η 6= 0

all µj different

µ1 = µ3 6= µ2

µ1 = µ2 6= µ3

µ1 = µ2 = µ3

CP2
{13, R̄1, R̄2, R̄3, R̄1R̄2, R̄2R̄3, ξ = 0, η = 0 all µj different
R̄1R̄3, R̄1R̄2R̄3 = −13}

CP3 {R2θ, R2θR̄2, R2θR̄3} ξ = 0, η = 0 µ1 = µ2 6= µ3

TABLE I: The symmetry classes, groups G, and the corresponding constraints on the scalar-potential parameters. The
eigenvalues of E are denoted by µj with j = 1, 2, 3 and the vector e3 = (0, 0, 1)T. G is the symmetry group defining the class.
The matrices R2θ ∈ SO(3) with 0 ≤ θ < π are defined in (A7) and (14) with α = 2θ, the reflection matrices R̄j in (18).

3. SYMMETRY CLASSES AND SYMMETRY GROUPS

The general THDM potential has 14 parameters; see (9). Considering only the scalar sector we can make a basis
change as in (11), (12) to diagonalise E = diag(µ1, µ2, µ3), thereby reducing the number of parameters to 11. One
may want to further reduce this number by imposing symmetries. This can be Higgs-family or GCP symmetries. A
Higgs-family transformation (11), (12) is a symmetry of the potential if and only if the parameters (9) satisfy

R(U)ξ = ξ, R(U)η = η, R(U)ERT(U) = E. (20)

A GCP transformation (15), (16) is a symmetry if and only if

R̄(U)ξ = ξ, R̄(U)η = η, R̄(U)ER̄T(U) = E. (21)

In [38] the possible symmetry classes of THDMs were derived, however, only potentials which are stable in the strong
sense were considered. Here we define, as in [27], a potential to be stable in the strong sense if stability is guaranteed
by the quartic field terms alone and in the weak sense if it is guaranteed only after inclusion of the quadratic field
terms in (2) respectively (8). A potential being bounded from below but having directions in field space where it
does not grow indefinitely for the fields going to infinity has only marginal stability. In all other cases the potential
is unstable. In [40] the symmetry classes of the THDMs were further studied and also softly broken symmetries were
considered.

We give in Table I the maximal symmetry group for each symmetry class and the corresponding constraints on the
potential (8). Note that in Table I the classes are defined to be mutually exclusive, that is, we assign a THDM to
a certain class if it has the corresponding group G (up to trivial equivalences) as symmetry group and not a bigger
one. If the parameters of a THDM potential are not satisfying any of the constraints of Table I, the theory has no
symmetry group except the trivial one, that is, the unit transformation. In appendix A we present a derivation of
these symmetry classes and groups where, as mentioned above, we do not use any assumptions on the stability of
the potential (2), (8). The methods explained in apppendix A also give an easy practical recipe for finding out if a
THDM potential has a symmetry and which one this is. The symmetry relations as given in Table I will be used in
section 4 for the discussion of the renormalisation in specific THDMs.

We emphasize that in Table I we give the exact conditions for the parameters of the scalar potential to have the
symmetry group G as listed and not a bigger one. The elements of G give the corresponding transformations in
K space. For proper rotations these are Higgs basis transformations; see eq. (12), for improper rotations these are
generalized CP transformations; see eq. (16). Of course, a group G of a symmetry class may contain the groups
of other classes as subgroups, as is obvious from Table I. For instance, the group O(3) contains all other groups as
subgroups and, clearly, the potential of the SO(3) symmetry class has all other symmetries as well. The numbering of
the eigenvalues of E in Table I is - without loss of generality - chosen conveniently, in order to give the same invariance
group G and not an equivalent one for all subclasses of one class. For the cases of degenerate eigenvalues of E it is
understood that a convenient choice of basis in the degenerate subspaces gives the groups G as listed. Other choices
of bases give equivalent groups.
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In Table I we have listed subclasses for Z2, U(1), and CP1. These are distinguished by the degeneracies of the
eigenvalues µj and for the CP1 case also by relations for ξ and η. These subclasses of a class correspond to the same
symmetry group G and therefore lead to no new symmetry classes. Under renormalisation only the groups G will be
preserved. That is, the subclasses of one class will not be invariant under renormalisation but will mix among each
other. Considering the theory of the two Higgs-boson doublets alone the renormalisation of the potential parameters
can not lead from one symmetry class to another one. If we start, for instance, with a theory of the CP2 class where
all µi are different we can not come by renormalisation to the CP3 or SO(3) classes where two, respectively all three,
of the µi’s are equal. We shall elaborate on this point below in section 4 in connection with the renormalisation in
the MCPM which is a complete theory including fermions and bosons.

The elements of the various symmetry groups in Table I are listed according to their action in K space; see (12),
(16). For completeness we list in appendix A also the corresponding transformations for the fields.

4. RENORMALISATION OF THE DIMENSION FOUR COUPLINGS IN THE MCPM

In this section we consider the renormalisation-group equations (RGEs) for the dimension four couplings in the
maximally CP symmetric model (MCPM) as constructed and studied in [34–37]. In the MCPM the Higgs potential
parameters (9), in a diagonal basis of the matrix E, have to fulfill

ξ = 0, η = 0, E = diag(µ1, µ2, µ3). (22)

In conventional notation of the Higgs potential (2) this corresponds to the constraints

m2
12 = 0, m2

11 = m2
22, λ1 = λ2, Im(λ5) = 0, λ6 = λ7 = 0. (23)

Without loss of generality we can assume

µ1 ≥ µ2 ≥ µ3. (24)

From Table I we see that the Higgs potential satisfying (22) can be in the symmetry classes CP2, CP3, or SO(3).
As shown in [34], stability, the correcte electroweak symmetry breaking (EWSB), and absence of zero-mass charged
Higgs bosons require and are guaranteed by

η00 > 0 , µi + η00 > 0 for i = 1, 2, 3 , ξ0 < 0 , µ3 < 0. (25)

In the MCPM there are five physical Higgs bosons, three neutral ones, ρ′, h′, h′′, and a charged pair, H±. Their
squared masses in terms of the model parameters are, at tree level,

m2
ρ′ = 2v20(η00 + µ3) , m2

h′ = 2v20(µ1 − µ3) , m2
h′′ = 2v20(µ2 − µ3) , m2

H± = 2v20(−µ3) . (26)

Here

v0 =

√
−ξ0

η00 + µ3
≈ 246 GeV (27)

is the standard vacuum-expectation value. Requiring now also absence of zero-mass neutral Higgs bosons and absence
of mass degeneracy between h′ and h′′ leads to

µ1 > µ2 > µ3, (28)

replacing the weaker condition (24). From Table I we see that we are dealing now with potentials in the CP2 symmetry
class with the corresponding symmetry group G as listed there. The main point of the MCPM is that the symmetry
group of the CP2 class is required to be respected also by the complete Lagrangian, including the fermions, the gauge-
boson, and the Yukawa sectors. It was shown in [34] that with this requirement a coupling of the two Higgs-boson
doublets to only one fermion family is not possible with non-vanishing Yukawa couplings. However, with a coupling
of the two Higgs-boson doublets to two fermion families this is indeed possible with one fermion family acquiring
masses and the other remaining massless. With a third fermion family kept uncoupled to the Higgs-boson doublets
this model gives very roughly what we observe in Nature: two rather light fermion families and one very heavy (the
third) fermion family.

The complete Lagrangian of the MCPM is recalled in App. B. The parameters of the MCPM are as follows.
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• Higgs potential parameters

ξ0, η00, µ1, µ2, µ3. (29)

• Yukawa sector coupling constants

cτ , ct, cb (30)

related to the third-fermion-family masses

mτ = cτ
v0√

2
, mt = ct

v0√
2
, mb = cb

v0√
2
. (31)

• Gauge couplings

g1, g2, g3 (32)

of the gauge groups U(1)Y , SU(2)L, and SU(3)C , respectively.

Let us now proceed and consider the one-loop RGEs in this model. The one-loop RGEs for the couplings of the
dimension-four terms in any renormalisable gauge theory are given in [49]. The RGEs given there apply to the deep
Euclidean region where coupling terms of dimension two can be neglected. Also shifts of scalar fields to give them
zero vacuum expectation value after EWSB are irrelevant there. For the quartic Higgs-potential couplings λ1,2,3,4,5,6,7
including the U(1)Y and SU(2)L gauge interactions with couplings g1 and g2, respectively, taking also the Yukawa
couplings (B4) into account we find for the MCPM from the results of [49]

8π2 dλ1
dt

=6λ21 + 2λ23 + 2λ3λ4 + λ24 + λ25 − λ1
(

3

2
g21 +

9

2
g22

)
+

3

8
g41 +

3

4
g21g

2
2 +

9

8
g42 + 2λ1(c2τ + c2b + c2t )− 2(c4τ + c4b + c4t ),

8π2 dλ3
dt

=2λ1(3λ3 + λ4) + 2λ23 + λ24 + λ25 − λ3
(

3

2
g21 +

9

2
g22

)
+

3

8
g41 −

3

4
g21g

2
2 +

9

8
g42 + λ3(c2τ + c2b + c2t ),

8π2 dλ4
dt

=2λ1λ4 + 4λ3λ4 + 2λ24 + 4λ25 − λ4
(

3

2
g21 +

9

2
g22

)
+

3

2
g21g

2
2 + λ4(c2τ + c2b + c2t ),

8π2 dλ5
dt

=λ5 (2λ1 + 4λ3 + 6λ4)− λ5
(

3

2
g21 +

9

2
g22

)
+ λ5(c2τ + c2b + c2t ),

dλ2
dt

=
dλ1
dt

,
dλ6
dt

=
dλ7
dt

= 0.

(33)

Here t = ln(M/M0) with M the mass scale of the renormalisation point and M0 a convenient reference scale, for
instance, M0 = 1 TeV. The RGEs of the λ’s can easily be translated to K space. For the generic THDM Higgs
potential this was done in [39]. In the case of the MCPM we have to extend these RGEs by including the Yukawa
interactions (B4). From the RGEs for the parameters of the generic Higgs potential as given in [39] we can check that
the diagonality of the matrix E and η = 0, see (22), are preserved under one-loop renormalisation in the MCPM. This
must be so, since this is guaranteed by the symmetry group G of the CP2 class; see Table I. Here we find from (9),
(10), and (33),

8π2 dη00
dt

=4η200 + η00(η11 + η22 + η33) + η211 + η222 + η233 − η00
(

3

2
g21 +

9

2
g22

)
+

3

4
g41 +

9

4
g42

+ (
3

2
η00 +

1

2
η33)(c2τ + c2b + c2t )−

1

2
(c4τ + c4b + c4t ),

8π2 dη11
dt

=η11

(
3η00 + 3η11 − η22 − η33 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t

)
+

3

2
g21g

2
2 ,

8π2 dη22
dt

=η22

(
3η00 − η11 + 3η22 − η33 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t

)
+

3

2
g21g

2
2 ,

8π2 dη33
dt

=η33

(
3η00 − η11 − η22 + 3η33 −

3

2
g21 −

9

2
g22

)
+

3

2
g21g

2
2

+ (
1

2
η00 +

3

2
η33)(c2τ + c2b + c2t )−

1

2
(c4τ + c4b + c4t ).

(34)
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As mentioned above these RGEs apply in the deep Euclidean region.
Let us now discuss the evolution of the differences of the eigenvalues of E:

µ1 − µ2, µ2 − µ3. (35)

From (34) we find

8π2 d

dt
(µ1 − µ2) =(µ1 − µ2)

[
3(η00 + µ1 + µ2)− µ3 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t

]
,

8π2 d

dt
(µ2 − µ3) =(µ2 − µ3)

[
3(η00 + µ2 + µ3)− µ1 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t

]
− 1

2
(η00 + µ3)(c2τ + c2b + c2t ) +

1

2
(c4τ + c4b + c4t ).

(36)

Suppose now that we start at M0 = 1 TeV, corresponding to t = 0, with the conditions (28). We have then, in
particular, [

µ1(t)− µ2(t)
]∣∣
t=0

> 0. (37)

From (36) we can see that the one loop RGEs preserve this property as long as all couplings stay finite. Indeed,
suppose that for 0 ≤ t ≤ t1 we have∣∣3(η00 + µ1 + µ2)− µ3 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t

∣∣ ≤ 8π2C, (38)

where C > 0 is a constant. We get then from (36)

8π2 d

dt
ln(µ1 − µ2) = 3(η00 + µ1 + µ2)− µ3 −

3

2
g21 −

9

2
g22 + c2τ + c2b + c2t , (39)

− C ≤ d

dt
ln(µ1 − µ2) ≤ C, (40)

e−Ct ≤ µ1(t)− µ2(t)

µ1(0)− µ2(0)
≤ eCt, for 0 ≤ t ≤ t1. (41)

Thus, µ1(t) − µ2(t) stays positive for 0 ≤ t ≤ t1. A similar argument applies for the evolution to negative t values.
Hence, µ1(t)− µ2(t) can not change sign as long as the theory parameters stay finite.

The analogous result for µ2 − µ3 can not be derived in the same way from (36). This is due to the terms not
proporotional to µ2 − µ3 on the r.h.s of (36). But in the pure scalar theory, that is, if we set g1 = g2 = 0 and
cb = ct = cτ = 0 we can again derive the analogue of (41).

We conclude that the one loop RGEs preserve µ1 > µ2 but, in the full theory, not necessarily µ2 > µ3 If now for
some t-value t0 we have µ2(t0) = µ3(t0) we have for the Higgs potential a higher symmetry, here the CP3 symmetry,
where two eigenvalues of E are equal; see Table I. But for the full theory this CP3 symmetry is not realised. Thus,
in the full theory the RGEs can lead to renormalisation scales M where the Higgs potential alone shows a higher
symmetry than the full theory. Of course, only the symmetry of the full theory is relevant for physics.

5. OBLIQUE PARAMETERS IN THE MCPM

The oblique parameters S, T , and U denote certain combinations of self-energies of the electroweak gauge bosons
with respect to any new contributions compared to the SM [42]. In any model beyond the SM the oblique parameters
can be computed and compared to the electroweak precision data [50] which require:

S = 0.01± 0.10, T = 0.03± 0.11, U = 0.06± 0.10. (42)

For the case of the general THDM the oblique parameters have been computed in [51, 52].
We shall now derive the predictions for the oblique parameters in the MCPM. In the MCPM the Yukawa couplings

are completely fixed and the only free parameters we encounter in the calculation of the oblique parameters are the
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FIG. 1: The allowed regions for the Higgs-boson masses mh′ and mh′′ corresponding to the 1-σ (dark) and 2-σ (bright)
uncertainties in the measured oblique parameters S, T , and U (42). The contours are shown for a fixed value of the SM-like
Higgs-boson mass, mρ′ = 125 GeV, and different choices of the charged-Higgs-boson mass mH± as indicated within the plots.
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FIG. 2: Same as in Fig. 1 but with the SM-like Higgs-boson mass fixed to mρ′ = 170 GeV.
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Higgs-boson masses mρ′ , mh′ , mh′′ , and mH± . Here ρ′ and h′ are the CP-even and h′′ is the CP-odd Higgs boson
and H± denotes the pair of charged Higgs bosons. In Figure 1 we show the contour plots for the 1-σ (dark) and 2-σ
(bright) deviations of the oblique parameters from the electroweak precision data (42) in the mh′–mh′′ plane. The
mass of the SM-like Higgs-boson ρ′ is fixed to mρ′ = 125 GeV. The charged-Higgs-boson mass mH± is set to different
values in the range of 125-500 GeV in the various plots. In Figure 2 we show analogous plots but for a mass of the
SM-like Higgs boson ρ′ of mρ′ = 170 GeV. Note that we have always mh′ > mh′′ in the MCPM which is the reason
that there are no allowed regions of parameter space above the diagonal of equal masses mh′ = mh′′ in Figures 1
and 2

We see from Figures 1 and 2 that there are large regions for the masses of the Higgs bosons h′, h′′, and H± where
the electroweak constraints (42) are satisfied. The allowed regions for these masses, up to several hundred GeV, are
very reasonable. The CP odd extra Higgs boson h′′ could even be below 100 GeV in mass. But then it would be
necessary to study all other experimental constraints for such a low-mass boson. Furthermore, we see from Figures 1
and 2 that with increasing masses of ρ′ and H± also the allowed domains for the masses of the Higgs bosons h′ and
h′′ shift to higher mass values.

6. CONCLUSIONS

In this paper we started with briefly reviewing the bilinear formalism which turns out to be quite powerful for the
study of the THDM. We have discussed the classification of the possible symmetry classes without any assumption on
the stability type of the THDM potential. We have given a practical and easily usable method how to determine the
symmetry class of a given THDM Higgs potential. We have defined the symmetry classes to be mutually exclusive; see
Table I. We have also given the symmetry group G corresponding to each symmetry class. We have focussed on one of
these symmetry classes, denoted by CP2, in some detail. The CP2 symmetric THDM has a number of simultaneous
CP invariances. As shown in [34] the extension of the CP symmetries of the potential to the Yukawa interactions
leads in a straightforward way to the so-called maximally CP-symmetric model (MCPM). In this model the Yukawa
couplings are completely fixed. We have studied the renormalisation-group equations of the quartic Higgs-potential
parameters in this model. We have found that the symmetries of this model are preserved by the RGEs, as it has to
be.

The MCPM has a hierarchy of quartic couplings µ1 > µ2 > µ3. We have shown that considering the theory of the
Higgs bosons alone this hierarchy of quartic couplings turn out to be stable against renormalisation group evolution.
However, taking the Yukawa couplings into account µ1 > µ2 is stable but not necessarily µ2 > µ3. Reaching µ2 = µ3

at a certain renormalisation scale would elevate the CP2 symmetry of the Higgs potential to a CP3 symmetry. But,
of course, this does not imply that the full MCPM which includes fermions and gauge bosons has a higher symmetry
than CP2 at this renormalisation scale.

Eventually, we have computed the oblique parameters in the MCPM. We find for large parameter space agreement
with the electroweak precision measurements. In particular we have presented the 1-σ and 2-σ contours of valid regions
in the mh′–mh′′ mass plane for different choices for the charged-Higgs-boson mass and for SM-like Higgs-boson masses
of 125 GeV and 170 GeV, respectively. The allowed regions for the masses of the Higgs bosons are in a reasonable
range; see Figures 1 and 2. These Higgs bosons with masses below 500 GeV should therefore be detectable in the
LHC experiments. As shown in [35–37] in the MCPM these Higgs bosons have characteristic production and decay
properties giving clear experimental signatures.

Appendix A: Derivation of symmetry classes

In this appendix we give a recipe which allows an easy identification of the symmetry class of any given THDM
potential (8).

The first step is to diagonalise E by a basis transformation (12). We get then

E = diag(µ1, µ2, µ3). (A1)

Since E is symmetric a diagonalisation is always possible. Therefore we work in the following in the E diagonal basis
and consider ξ and η (9) in this basis. Now we have to distinguish three cases for the µ’s.

(a) µ1, µ2, µ3 all different.
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Then we see from (20) and (21) that only diagonal O(3) matrices R or R̄ may lead to symmetries, that is, we
have to consider

R̄ = R̄j (j = 1, 2, 3; see (18)),

R̄ = R̄1R̄2R̄3 = −13,
R = R̄iR̄j with i 6= j.

(A2)

Now we can easily check the conditions for ξ, η from (20) and (21). We can have the following cases:

(a.1) (ξi, ηi) 6= (0, 0) for i = 1, 2, 3.

With none of the matrices from (A2) we can fulfill the symmetry relations in (20). In this case the potential
has only the trivial symmetry group G = {13}.

(a.2) Exactly one pair fulfills (ξi, ηi) = (0, 0) where i ∈ {1, 2, 3}.
Without loss of generality we can set (ξ2, η2) = (0, 0), (ξ1, η1) 6= (0, 0), (ξ3, η3) 6= (0, 0). Clearly, from (20),
(21) we have R̄2 and nothing else as symmetry transformation. We get the symmetry group

G = {13, R̄2} (A3)

which characterises the CP1 symmetry class; see Table I, the first subclass of CP1.

(a.3) Exactly two pairs fulfill (ξi, ηi) = (0, 0) where i ∈ {1, 2, 3}.
Without loss of generality we can set (ξ1, η1) = (ξ2, η2) = (0, 0), (ξ3, η3) 6= (0, 0). From (20), (21) and (A2)
we see that the invariance group is

G = {13, R̄1, R̄2, R̄1R̄2}. (A4)

We get the symmetry group characterising the Z2 symmetry class; see Table I, the first subclass of Z2.

(a.4) ξ = 0 and η = 0 .

Here we find from (20), (21) and (A2) as symmetry group

G = {13, R̄1, R̄2, R̄3, R̄1R̄2, R̄2R̄3, R̄1R̄3, R̄1R̄2R̄3 = −13}. (A5)

This characterises the CP2 symmetry class.

(b) Exactly two eigenvalues µj of E are equal.

Without loss of generality we set

µ1 = µ2 6= µ3. (A6)

From (20), (21) we see that E allows now as invariances

R2θ =

cos(2θ) − sin(2θ) 0

sin(2θ) cos(2θ) 0

0 0 1

 0 ≤ θ < π, (A7)

R̄ = R̄j , j = 2, 3, (A8)

R̄ = R2θR̄3, (A9)

R̄ = R2θR̄2. (A10)

Note that R̄1 is included in (A10) for 2θ = π: R̄1 = RπR̄2.

Now we consider again all possibilities for ξ and η.

(b.1) (ξ3, η3) 6= (0, 0) and (ξ × η)e3 6= 0 .

The first relation implies that neither R̄3 (A8) nor any R2θR̄3 (A9) can lead to a symmetry. The second
relation implies that (ξ1, ξ2)T and (η1, η2)T are linearly independent. Therefore, neither R2θ (A7) nor any
R2θR̄2 (A10) can lead to a symmetry and we have here only the trivial invariance group

G = {13}. (A11)
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(b.2) (ξ3, η3) 6= (0, 0), (ξ × η)e3 = 0, (ξ − ξ3e3,η − η3e3) 6= (0, 0).

Here the vectors (ξ1, ξ2)T and (η1, η2)T are linearly dependent but at least one of them is non zero. Due
to µ1 = µ2 6= µ3, see (A6), we can make a basis change in the 1–2 subspace and achieve, without loss of
generality, (ξ1, η1) 6= (0, 0) and (ξ2, η2) = (0, 0). We see now that here from all possible invariances (A7)
to (A10) only R̄2 remains. Thus, the invariance group is

G = {13, R̄2} (A12)

and we get the CP1 class. This is the third subclass of CP1 listed in Table I.

(b.3) (ξ3, η3) 6= (0, 0), (ξ × η)e3 = 0, (ξ − ξ3e3,η − η3e3) = (0, 0).

This case can also be characterised by

ξ × e3 = 0, η × e3 = 0, (ξ,η) 6= (0, 0). (A13)

That is, we have here

ξ =

 0

0

ξ3

 , η =

 0

0

η3

 , (ξ3, η3) 6= (0, 0). (A14)

From (A7) to (A10) we see that in this case the invariance group is

G = {R2θ, R2θR̄2}. (A15)

We get the first subclass of the U(1) symmetry class in Table I.

(b.4) (ξ3, η3) = (0, 0), ξ × η 6= 0 .

Here (ξ1, ξ2)T and (η1, η2)T are linearly independent. We see from (20) and (21) that neither R2θ (0 <
θ < π) nor R2θR̄2 (0 ≤ θ < π) can lead to invariances. But, clearly, R̄3 gives an invariance and the
corresponding symmetry group is

G = {13, R̄3}. (A16)

This group is, of course, equivalent to G = {13, R̄2} as we see after a trivial exchange of numbering of the
2 and the 3 axes. We list this case as second subclass of the CP1 class in Table I.

(b.5) (ξ3, η3) = (0, 0), ξ × η = 0, (ξ,η) 6= (0, 0).

Here (ξ1, ξ2)T and (η1, η2)T are linearly dependent. We can make a rotation in the 1–2 subspace to achieve
(ξ1, η1) 6= (0, 0) and (ξ2, η2) = (0, 0). From (20), (21) and (A7) to (A10) we see that here the symmetry
group is

G = {13, R̄2, R̄3, R̄2R̄3}. (A17)

After an exchange of numbering of the 1 and 3 axes this gives the second subclass of the Z2 class in Table I.

(b.6) ξ = 0, η = 0.

Here we have invariance for all the transformations (A7) to (A10). The corresponding symmetry group is

G = {R2θ, R2θR̄2, R2θR̄3} with 0 ≤ θ < π. (A18)

We get the CP3 class.

(c) µ1 = µ2 = µ3 ≡ µ.

Here we have E = µ13 and E allows as invariance all R and R̄ matrices of O(3). We distinguish the following
subcases.

(c.1) ξ × η 6= 0.

Without loss of generality we choose the second axis to be parallel to ξ× η. We have then (ξ2, η2) = (0, 0)
and further that (ξ1, ξ3)T and (η1, η3)T are linearly independent. The invariance group is

G = {13, R̄2} (A19)

and we get the fourth subclass of the CP1 class in Table I.
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R U

R̄1R̄2 = diag(−1,−1, 1) σ3

R̄2R̄3 = diag(1,−1,−1) σ1

R̄1R̄3 = diag(−1, 1,−1) σ2

R2θ, see (A7) and (14) with α = 2θ cos(θ)12 − i sin(θ)σ3

TABLE II: Correspondence of proper rotation matrices R in (12) and field transformations U in (11).

R̄ U

R̄1 = diag(−1, 1, 1) σ3

R̄2 = diag(1,−1, 1) 12

R̄3 = diag(1, 1,−1) σ1

−13 ε = iσ2

R2θR̄2, see (A10) cos(θ)12 − i sin(θ)σ3

R2θR̄3, see (A9) cos(θ)σ1 + sin(θ)σ2

TABLE III: Correspondence of improper rotation matrices R̄ in (16) and matrices U in GCP transformations of fields (15).

(c.2) ξ × η = 0, (ξ,η) 6= (0, 0).

Here the vectors ξ and η are parallel and at least one of them is unequal zero. We choose this vector to
define the 3 axis and get

ξ =

 0

0

ξ3

 , η =

 0

0

η3

 , with (ξ3, η3) 6= (0, 0). (A20)

The invariance group is then from (20) and (21)

G = {R2θ, R2θR̄2}; (A21)

see (A7) to (A10). We get the second subclass of the U(1) class in Table I.

(c.3) ξ = 0, η = 0.

Here, clearly, we get as symmetry group

G = O(3) = {R,RR̄2}, with R ∈ SO(3). (A22)

This is labeled as SO(3) class in Table I.

To summarize, in this appendix we have – in a systematic way – gone through all possibilities for the potential
parameters E, ξ, η and checked for possible symmetry groups. For any given THDM potential all these steps are
easily done and this gives a practical way to identify if any and what symmetry the potential has. Of course, a
symmetry of the potential is not guaranteed to be respected by the Yukawa couplings. This has to be checked as a
second step. Such a program has, for instance, be carried through for the MCPM in [34].

The corespondence of the Higgs-family transformations for fields and field bilinears is given in (11) resp. (12). An R
in (12) determines U in (11) up to gauge transformations. Similarly, for GCP transformations R̄ in (16) determines
U in (15) up to gauge transformations. In Tables II and III we give these correspondences of transformations in field
and K space for the elements of the groups G occuring in Table I.

Appendix B: Lagrangian of the MCPM

In sections 4 and 5 we consider a model corresponding to the symmetry class CP2 in Table I, the MCPM. Here we
recall the Lagrangian of this model as originally given in [34].

The Lagrangian of the MCPM can be written as

LMCPM = Lϕ + LYuk + LFB . (B1)
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Here LFB is the standard gauge kinetic Lagrange density for fermions and gauge bosons (see for instance [53]).
The Higgs-boson Lagrangian is

Lϕ =
∑
i=1,2

(Dµϕi)
†

(Dµϕi)− V (ϕ1, ϕ2) , (B2)

with V (ϕ1, ϕ2) the Higgs potential (8) with the constraints (22). The covariant derivative reads

Dµ = ∂µ + ig2W
a
µTa + ig1BµY (B3)

where Ta and Y are the generating operators of weak-isospin and weak-hypercharge transformations, respectively.
W a
µ , a = 1, 2, 3 and Bµ are the gauge fields and g2 and g1 the corresponding gauge couplings. For the Higgs doublets

we have Ta = σa/2 where σa with a = 1, 2, 3 are the Pauli matrices. We choose the convention that both Higgs-boson
doublets have weak hypercharge y = +1/2.

Furthermore, LYuk denotes the Yukawa term which in the MCPM has the form

LYuk(x) = −cτ

[
τ̄R(x)ϕ†1(x)

(
ντ L(x)

τL(x)

)
− µ̄R(x)ϕ†2(x)

(
νµL(x)

µL(x)

)]

+ct

[
t̄R(x)ϕT

1 (x) ε

(
tL(x)

bL(x)

)
− c̄R(x)ϕT

2 (x) ε

(
cL(x)

sL(x)

)]

−cb

[
b̄R(x)ϕ†1(x)

(
tL(x)

bL(x)

)
− s̄R(x)ϕ†2(x)

(
cL(x)

sL(x)

)]
+ h.c.

(B4)

where ε = iσ2 and cτ , ct and cb are real positive constants, determined by the vacuum expectation value v0 and the
fermion masses; see (31). Note that the first family remains uncoupled – at tree level – to the Higgs bosons in the
MCPM.

Through EWSB only the Higgs-boson doublet ϕ1 gets a vacuum-expectation value. In the unitary gauge we have

ϕ1(x) =
1√
2

(
0

v0 + ρ′(x)

)
, ϕ2(x) =

(
H+(x)

1√
2
(h′(x) + ih′′(x))

)
, (B5)

where ρ′(x), h′(x) and h′′(x) are the real fields corresponding to the physical neutral Higgs particles. The fields H+(x)

and H−(x) =
(
H+(x)

)†
correspond to the physical charged Higgs-boson pair.
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