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Abstract We consider the triple Higgs coupling for h(125)

Higgs boson within the most general 2HDM. At moderate
values of parameters of model, allowing by modern data,
noticeable deviation of this coupling from its SM value is
improbable. This deviation can be sizable only if some mea-
surable parameters of the model are exotic.

1 Introduction

The recent discovery of a Higgs boson with M ≈ 125 GeV
at the LHC [1–6] suggests that the spontaneous electroweak
symmetry breaking is most probably brought about by the
Higgs mechanism. The simplest realization of the Higgs
mechanism introduces a single scalar isodoublet φ with the
Higgs potential VH = −m2(φ†φ)/2 + λ(φ†φ)2/2. This
model is usually called the Standard Model (SM).

The mentioned data do not rule out the possibility of real-
ization of beyond SMmodels (BSM) which include both neu-
tral Higgs scalars ha (generally without definite CP parity)
and charged Higgs scalars H±

b with masses Ma and Mb±,
respectively.

In the discussion that follows we use the relative couplings
for each neutral Higgs boson ha (for the case with single
charged Higgs boson H±):

χ P
a = gP

a

gP
SM

[P = V (W, Z), q = t, b, . . . , � = τ, . . .] ,

χ±
a = g(H+H−ha)

2M2±/v
, χH+W−

a = g(H+W−ha)
MW /v

,

χabc = g(hahbhc)

g(hhh)SM
.

(1)
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The quantities χ P
a are the ratios of the couplings of ha with

the fundamental particles P to the corresponding couplings
for the would-be SM Higgs boson with Mh = Ma . The
other relative couplings describe the interaction of ha with
a charged Higgs boson. The couplings χV

a and χ±
a are real

due to the Hermiticity of the Lagrangian, while the other
couplings are generally complex.

We omit the adjective “relative” below.

1.1 SM-like scenario

Current data allow us to suggest that Nature realizes
an SM-like scenario1: The observed particle with mass
M ≈ 125 GeV is a Higgs boson, and we denote it h1. It
interacts with the gauge bosons and t-quarks with coupling
strengths that are close to those predicted by the SM within
experimental accuracy (see e.g. [7–10]). In particular, for
coupling with the gauge bosons

εV = |1 − (χV
1 )2| � 1. (2)

In the estimates we have in mind εV ≤ 0.1.

1.2 Two Higgs doublet model (2HDM)

The 2HDM presents the simplest extension of the standard
Higgs model [22]. It offers a number of phenomenological
scenarios with different physical contents in different regions
of the model parameter space, such as a natural mechanism
for spontaneous CP violation, etc. [22–24] For example, the
Higgs sector of the MSSM is a particular case of 2HDM.
Some variants of 2HDM have interesting cosmological con-
sequences [25,26].

1 The term SM-like scenario was introduced in [11–18], the term
alignment limit was introduced recently for this very situation, see e.g.
[19–21], the decoupling limit is the particular case of this scenario.
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In the most general 2HDM the couplings (1) obey the
following sum rules [27–30]:
∑

a

(χV
a )2 = 1, (3a)

|χV
a |2 + |χH±W∓

a |2 = 1, (3b)
∑

a

(χ
f
a )2 =1. (3c)

We have constructed in [30] the minimal complete set of
measurable quantities (“observables”) which determine all
parameters of the 2HDM. This set contains

v.e.v. of Higgs field v = 246 GeV,

masses of Higgs bosons Ma, M± (a = 1, 2, 3),

two out of three couplings χV
a ,

3 couplings H+H−ha (quantities χ±
a Eq. (1)),

quartic coupling g(H+H−H+H−). (4)

In the most general 2HDM, these observables are indepen-
dent of each other. In some particular variants of 2HDM,
additional relations between these parameters may appear
(for example, in the CP-conserving case we have χV

3 = 0,
χ±

3 = 0).

1.3 Limitations for parameters

The values of parameters λa of 2HDM (and therefore the
mentioned basic parameters) obey two groups of constraints
(see e.g. [23,24]).

Positivity constraints are conditions for the stability of
Higgs potential at large quasi-classical values of fields. They
do not restrict the parameters from above.

Perturbativity (and unitarity) constraints make it pos-
sible to use the first non-vanishing approximation of pertur-
bation theory for description of physical phenomena with
reasonable accuracy – a perturbative description. (This is a
tree approximation for most of the phenomena and a one-loop
approximation for the phenomena which are absent at tree
level, e.g. decays h → γ γ , h → Zγ , h → gg.) The starting
point in obtaining of these constraints is the observation that
the effective parameter of the perturbative expansion is not
λi (i = 1, 2, . . . 7) but λi/	 with 	 = 8π or 4π . The per-
turbativity condition is written usually in the form |λi | < 	.

At |λi | ≈ 	 a perturbative description of the physical
phenomena is incorrect even at low energies. In particu-
lar, the equations, expressing masses and couplings via the
parameters of the Lagrangian, become invalid. Good exam-
ples provide the one-loop radiative corrections (RC) to the
triple Higgs coupling [31–38]. In the SM-like scenario these
RC reach 150 ÷ 200% at |λi | ≈ 	. (Reference [38] presents
an example with clear details. The authors consider the Inert
Doublet Model, i.e. 2HDM with exact Z2 symmetry in the

SM-like case, at λ4 = λ5 = 0 and λ1 = λSM . The one-
loop corrections to g(h1h1h1) are described by the single
parameter λ3, and they reach 180% at |λ3| ≈ 	.)

The first non-vanishing approximation of perturbation the-
ory describes physical phenomena with relative inaccuracy
k only at

|λi | < k	 (k < 1). (5)

In particular, in the region of the parameters, the provided
accuracy of the standard description in 30% one should have
k = 0.3. In this region of parameters the value of RC, dis-
cussed in [31–38], does not exceed 20%.

Below we will have in mind this very limitation with
k ≈ 0.3.

The realization of the SM-like scenario imposes additional
restrictions on the parameters. Because of the sum rules (3),
in the SM-like scenario the couplings of the other neutrals
ha with gauge bosons χV

a are small. Besides, the absolute
value of the non-diagonal coupling with EW gauge bosons
for the observed Higgs boson χW±H∓

1 is small,2 while similar

couplings for the other neutrals χW±H∓
2,3 are close to their

maximal possible values:

(3a) ⇒ |χV
a |2 < εV � 1, a = 2, 3, (6)

(3b) ⇒ |χH±W∓
1 |2 ∼ εV � 1 ; |χH±W∓

2,3 |2 ≈ 1. (7)

In the SM-like scenario the perturbativity constraints lead to
additional restrictions. In particular, according to Eq. (23)
from Ref. [30], the perturbativity constraint (5) imposes the
limitation on the coupling of h1 to charged Higgs bosons:

|χ±
1 | < 1 at M± > 500 GeV. (8)

It means that the heavy charged Higgs boson gives only a
small contribution to the two-photon width of the observed
Higgs boson h1.

Next, we consider heavy neutral Higgs bosons
ha (a = 2, 3) in the SM-like scenario. The couplings χV

a
are small (see (6)), while Eq. (23) from Ref. [30] allows us
to have big values of χ±

a (� 1/
√

εV ). Therefore, the two-
photon width of the boson ha is strongly different from a
similar width as calculated for the would-be SM Higgs boson
with the mass Ma .

The last statement is illustrated by a simple calculation for
the toy case M2 = 600 GeV, M± = 300 GeV. We present in
the table the total Higgs width �tot in GeV, and its two-photon
width �(γ γ ) in MeV for different scenarios, assuming the
partial width h2 → h1h1 to be small.

2 The calculations of H− → W−h1 decay at LHC in [66,67] are made
in the CP-conserving 2HDM and with not very small εV .
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Scenario �tot �(γ γ ) Br(γ γ )

Would-be SM 114 1 0.9 × 10−5

χV
2 = 0.1, χ t

2 = 0.3, χ±
2 = 0 2.65 0.042 1.6 × 10−5

χV
2 = 0.1, χ t

2 = 0.3, χ±
2 = 1 2.65 0.1 3.7 × 10−5

χV
2 = 0.1, χ t

2 = 0.3, χ±
2 = 2 2.65 0.27 10−4

χV
2 = 0.1, χ t

2 = 1, χ±
2 = 0 20.4 0.33 1.5 × 10−5

χV
2 = 0.1, χ t

2 = 1, χ±
2 = 1 20.4 0.66 3 × 10−5

χV
2 = 0.1, χ t

2 = 1, χ±
2 = 2 20.4 1.05 5 × 10−5

2 Triple Higgs vertex

The observation of hh production and the extraction of the
triple Higgs vertex g(hhh) from the future experiments is
scheduled at the LHC and other colliders. This is a necessary
step in the verification of the Higgs mechanism. Hopefully,
these observations will allow us to see the effects of BSM.3

The studies of triple Higgs coupling have long history;
for recent reviews see e.g. [39–42]. There are two major
problems. The first one is whether it is possible or not to
observe hh production, caused by hhh vertex. The second
one is whether it is possible to use these observations for the
extraction of New Physics effects beyond SM.

The accuracy in the extraction of a triple Higgs vertex
g(hhh) from the future data cannot be high, since in each
case the corresponding experiments deal with interference
of two channels – an independent production of two Higgses
and production of Higgses via hhh vertex. This interference
is mainly destructive [43,44]. For example, for a 100 TeV
hadron collider with total luminosity 3/ab one can hope to
reach an accuracy of 40% in the extraction of this vertex from
future data [45–48]; at ILC the accuracy in the extraction
of g(hhh) will be better than 80% only after 10 years of
operation [49]. Therefore, the effects of New Physics will be
distinguishable in the data of g(hhh) in the realistic future
only if the deviation of this coupling from its SM value is
high enough,

|χ111 − 1| � 1. (9)

One of the approaches in the description of the SM viola-
tions is to add in the SM Lagrangian terms with anomalous
interactions of Higgs boson. It was found for many reason-
able benchmark points that these anomalous interactions are
difficult to observe [50–54].

The other approach is to consider some special form of
BSM. The review of the whole variety of possible BSM mod-

3 In the models containing additional heavy Higgs bosons ha with
Ma>2M1, the resonant h1h1 production like pp→(h2→h1h1)+ · · ·
becomes possible. In this paper we discuss only non-resonant h1h1
production, without intermediate ha 
= h1.

els is beyond our scope. We limit ourself to a consideration
of 2HDM in its most general form.

The potential of such a g(h1h1h1) observation was stud-
ied for some benchmark points of the parameters of 2HDM
mainly in the case of CP conservation and with moderate val-
ues of the parameters [55–60], for the MSSM with CP con-
servation [61,62] or with violated CP [63,64] mainly beyond
the SM-like scenario. The case of the SM-like scenario with
similar limitations was considered in [65].

2.1 Triple Higgs coupling via observables

The transition from neutral components of basic fields φ1,2

to the neutral Higgs bosons ha is described by some mixing
matrix. The equation for triple Higgs coupling in the most
general 2HDM via the parameters of the Lagrangian and
elements of this mixing matrix is obtained simply (see e.g.
Eq. (25) of Ref. [30]). The expression of this coupling in
terms of the introduced observables (4) was obtained in Eq.
(36) of Ref. [30]. We transform it to the following form:

g(h1h1h1) = (M2
1 /v) χ111;

χ111 = χV
1

[
1 +

(
1 − (χV

1 )2
)
R
]
, R =

3∑

i=1

Ri ;

R1 = 2M2±
M2

1

(
χV

1 χ±
1 − 1

)
, R2 = 1 + 2

3∑

b=1

M2
b

M2
1

(χV
b )2,

R3 = 2M2±
M2

1

[
3∑

b=2

χV
b χ±

b +Re

(
χH−W+

1

χV
1

3∑

b=1

χH+W−
b χ±

b

)]
.

(10)

2.2 Triple Higgs coupling in SM-like scenario

With the estimates (6), (7) we have

χ111 ≈ [1 + (R − 1/2)εV ]. (11)

We see that at moderate values of the parameters, the relative
coupling χ111 is close to 1, and it is difficult to expect a sizable
effect.4

Nevertheless, it is interesting to consider the special exotic
values of the model parameters that provide sizable devia-
tions of the triple Higgs coupling from its SM value, i.e.
|χ111 − 1| � 1. We consider the effect of different terms Ri ,
entering R.

The term R1 can give |χ111 − 1| � 1 if the charged
Higgs boson H± is heavy enough and the coupling χ±

1 of the
observed Higgs boson with H± deviates substantially from

4 For the particular CP-conserving case and with moderate values of
parameters such a conclusion was obtained in [55–60,65] (see also
[61–64] for the CP-conserving MSSM).
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the value χ±
1 ≈ 1. In view of Eq. (8), it can happen if this

coupling is either very small or negative.
The term R2 ∼ 3+εV (M2

b/M2
1 ) can give |χ111 − 1| � 1

only if at least one of the other Higgs bosons h2,3 is heavy
enough, M2,3 > 1 TeV. Direct discovery of such Higgs
bosons seems to be a difficult task. Therefore the value of
g(h1h1h1) might become an important source of knowledge
as regards such heavy neutrals for a long time.

The term R3 contains small factors χV
2,3, χH+W−

1 and fac-

tors χ±
2,3 which can be large (up to 1/

√
εV ). The term R3

may not be small if H± is heavy.
Certainly, the real range of possible values of discussed

parameters is restricted by other observations. Better esti-
mates are possible only after measuring of εV with reason-
able accuracy. In particular, at εV � 0.1 we cannot expect
sizable effects in the triple Higgs vertex.

3 Summary

• Measuring hh production at various colliders is a nec-
essary step in the verification of the Higgs mechanism
of EWSB. Within the SM-like scenario in the 2HDM,
these measurements can give information as regards New
Physics beyond SM only at exotic values of the parame-
ters listed above. The enlargement of the field of parame-
ters of 2HDM at the transition from CP-conserved softly
Z2 broken potential to the most general case gives no new
essential opportunities in the deviation of triple Higgs
coupling from its SM value.
In our conclusions we limit ourselves to perturbative lim-
itations in the form (5) with k ∼ 0.3. These limitations
guarantee us applicability of first orders of perturbation
theory for a description of model (including the expres-
sions of the masses and couplings via the parameters of
the Lagrangian) and a small value of the quantum (loop)
corrections.

• In other models the deviation of the triple Higgs coupling
from its SM value can be stronger than that in 2HDM at
moderate values of the parameters; see [68,69]. In the
particular case of the nMSSM (2HDM +Higgs singlet)
values χ111 can range from −5 to 20 [61–64].

• If the mass M2 of the heavier Higgs boson h2 lies within
the interval (250÷400) GeV and |χ t

2| > 1 (in the SM-like
scenario for h1), the following interesting phenomenon
takes place. The boson h2 becomes relatively narrow and
the cross section of gluon fusion gg → h2 can be larger
than that for the would-be SM Higgs boson with mass M2.
The process gg → h2 → h1h1 can be seen as a resonant
production of the h1h1 pair. In principle, it allows us to
discover the mentioned h2 at LHC (see the examples in
[55–60,70,71] for special sets of parameters).
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