71 research outputs found

    Material Stock Demographics: Cars in Great Britain.

    Get PDF
    Recent literature on material flow analysis has been focused on quantitative characterization of past material flows. Fewer analyses exist on past and prospective quantification of stocks of materials in-use. Some of these analyses explore the composition of products' stocks, but a focus on the characterization of material stocks and its relation with service delivery is often neglected. We propose the use of the methods of human demography to characterize material stocks, defined herein as stock demographics, exploring the insights that this approach could provide for the sustainable management of materials. We exemplify an application of stock demographics by characterizing the composition and service delivery of iron, steel, and aluminum stocks of cars in Great Britain, 2002-2012. The results show that in this period the stock has become heavier, it is traveling less, and it is idle for more time. The visualization of material stocks' dynamics demonstrates the pace of product replacement as a function of its usefulness and enables the formulation of policy interventions and the exploration of future trends.This work was supported by EPSRC, grant reference EP/N02351X/1.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acs.est.5b0501

    An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe

    Get PDF
    This research contributes to discussions about policy interventions to stimulate the transition of vehicle technology. Concentrating on passenger cars, an extensive system dynamics based market agent model of powertrain technology transitions within the EU up to 2050 is employed. With a focus on subsidy scenarios for both infrastructure deployment and vehicle purchase, and set within the context of the EU fleet emission regulations, we find that there are important interactions between different powertrain types and with infrastructure provision. For example, strong plug-in electric vehicle (PiEV) policy could inhibit the maturity of hydrogen fuel cell vehicles. Infrastructure provision is important for improving the utility of a PiEV, but we find that in the early market it may have a weaker correlation with uptake than other policy options, until the PiEV stock share is over around 5%. Furthermore, an attempt to install a ratio of much more than one charge point per 10 PiEV may lead to little gains and high costs. PiEV sales are relatively insensitive at target levels over 25 PiEV per charge point. The results of our study can help policymakers to find the right balance and timing of measures targeting the transition towards low carbon alternative vehicles

    Tensions in the periphery: Dependence and the trajectory of a low-cost productive model in the Central and Eastern European automotive industry

    Get PDF
    This article analyses the productive strategy adopted by Renault for its Dacia plant in Romania. It proposes a detailed analysis of the conditions for the success of the Logan project – Renault’s radical approach to the concept of the low-cost automobile. We look into both market- and production-related aspects that have made the Logan work and highlight the tensions sparked by Renault’s drive to capitalize on its favourable market situation as well as the success achieved by Dacia’s workers in defending their interests. In particular, we emphasize the company governance compromises that have shaped industrial relations at Dacia over the past decades and show how in recent years the maintaining of such a compromise has come increasingly into question due to threats by automation and relocation in a context of constantly rising wages and improving working conditions. Finally, we discuss the strategic dilemmas facing both management and labour and their possible resolutions, as well as the relevance of the Dacia case for understanding the future of Central and Eastern Europe as a peripheral region attracting automotive foreign direct investments

    Lifestyle, efficiency and limits: modelling transport energy and emissions using a socio-technical approach

    Get PDF
    It is well-known that societal energy consumption and pollutant emissions from transport are influenced not only by technical efficiency, mode choice and the carbon/pollutant content of energy but also by lifestyle choices and socio-cultural factors. However, only a few attempts have been made to integrate all of these insights into systems models of future transport energy demand or even scenario analysis. This paper addresses this gap in research and practice by presenting the development and use of quantitative scenarios using an integrated transport-energy-environment systems model to explore four contrasting futures for Scotland that compare transport-related ‘lifestyle’ changes and socio-cultural factors against a transition pathway focussing on transport electrification and the phasing out of conventionally fuelled vehicles using a socio-technical approach. We found that radical demand and supply strategies can have important synergies and trade-offs between reducing life cycle greenhouse gas and air quality emissions. Lifestyle change alone can have a comparable and earlier effect on transport carbon and air quality emissions than a transition to EVs with no lifestyle change. Yet, the detailed modelling of four contrasting futures suggests that both strategies have limits to meeting legislated carbon budgets, which may only be achieved with a combined strategy of radical change in travel patterns, mode and vehicle choice, vehicle occupancy and on-road driving behaviour with high electrification and phasing out of conventional petrol and diesel road vehicles. The newfound urgency of ‘cleaning up our act’ since the Paris Agreement and Dieselgate scandal suggests that we cannot just wait for the ‘technology fix’

    Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators

    Get PDF
    International audienceIn this study, material flow analysis (MFA) is applied to quantify and break the obstacles for advancing a circular economy (CE) of platinum (Pt) from catalytic converters (CC) in Europe. First , the value chain and related stakeholders are mapped out in a MFA-like model to both facilitate the assessment of stocks and flows, and get a comprehensive view of potential action levers and resources to close-the-loop. Then, through the cross analysis of numerous data sources, two MFA are completed: (i) one general MFA, and (ii) one sector-specific MFA, drawing a distinction between the fate of Pt from (a) light-duty vehicles, under the ELV Directive 2000/EC/53, and (b) heavy-duty and off-road vehicles. Key findings reveal a leakage of around 15 tons of Pt outside the European market in 2017. Although approximately one quarter of the losses are due to in-use dissipation, 65 % are attributed to insufficient collections and unregulated exports. Comparing the environmental impact between primary and secondary production, it has been estimated that halving the leakages of Pt during usage and collection could prevent the energetic consumption of 1.3x10^3 TJ and the greenhouse gases emission of 2.5x10^2 kt CO2 eq. Through the lens of circularity indicators, activating appropriate action levers to enhance the CE performance of Pt in Europe is of the utmost importance in order to secure future productions of new generations of CC and fuel cells. Moreover, the growing stockpile of Pt from CC in use urges for better collection mechanisms. Also, the CC attrition during use and associated Pt emission s in the environment appears as non-negligible. Based on the scarce and dated publications in this regard, we encourage further research for a sound understanding of this phenomenon that can negatively impact human health
    • 

    corecore