25 research outputs found

    Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region

    Get PDF
    Background: Alterations and senescence in bone marrow mesenchymal stromal cells of multiple myeloma patients (MM-BMMSCs) have become an important research focus. However the role of senescence in the pathophysiology of MM is not clear. Methods: Correlation between senescence, cell cycle and microRNA expression of MM-BMMSCs (n = 89) was analyzed. Gene expression analysis, copy number analysis and methylation specific PCR were performed by Real-Time PCR. Furthermore, cyclin E1, cyclin D1, p16 and p21 genes were analyzed at the protein level using ELISA. Cell cycle and senescence were analyzed by FACS. MiRNA transfection was performed with miR-485-5p inhibitor and mimic followed by downstream analysis of senescence and cell cycle characteristics of MM-BMMSCs. Results were analyzed by Mann-Whitney U test, Wilcoxon signed-rank test and paired t-test depending on the experimental set up. Results: MM-BMMSCs displayed increased senescence associated beta-galactosidase activity (SA-betaGalA), cell cycle arrest in S phase and overexpression of microRNAs. The overexpressed microRNAs miR-485-5p and miR-519d are located on DLK1-DIO3 and C19MC, respectively. Analyses revealed copy number accumulation and hypomethylation of both clusters. KMS12-PE myeloma cells decreased SA-betaGalA and influenced cell cycle characteristics of MM-BMMSCs. MiR-485-5p was significantly decreased in co-cultured MM-BMMSCs in connection with an increased methylation of DLK1-DIO3. Modification of miR-485-5p levels using microRNA mimic or inhibitor altered senescence and cell cycle characteristics of MM-BMMSCs. Conculusions: Here, we show for the first time that MM-BMMSCs have aberrant methylation and copy number of the DLK1-DIO3 and C19MC genomic region. Furthermore, this is the first study pointing that multiple myeloma cells in vitro reduce both the senescence phenotype of MM-BMMSCs and the expression of miR-223 and miR-485-5p. Thus, it is questionable whether senescence of MM-BMMSCs plays a pathological role in active multiple myeloma or is more important when cell interaction with myeloma cells is inhibited. Furthermore, we found that MiR-485-5p, which is located on the DLK1-DIO3 cluster, seems to participate in the regulation of senescence status and cell cycle characteristics of MM-BMMSCs. Thus, further exploration of the microRNAs of DLK1-DIO3 could provide further insights into the origin of the senescence state and its reversal in MM-BMMSCs

    Rabbit antithymocyte globulin induces rapid expansion of effector memory CD8 T cells without accelerating acute graft versus host disease

    Get PDF
    Rabbit antithymocyte globulin (Thymoglobulin(®)) is commonly used as graft-versus-host disease (GvHD) prophylaxis. Since we found similar total CD8 T cell numbers in patients with and without Thymoglobulin(®) therapy within the first six months after allogeneic hematopoietic stem cell transplantation, we have analyzed the reconstitution of the CD8 T cell compartment in detail. After T cell-depletion, higher and more sustained proliferative capacity of memory CD8 T cells resulted in their rapid expansion, whereas the fraction of naive CD8 T cells decreased. Importantly, this shift towards effector memory CD8 T cells did not accelerate the incidence of GvHD

    Extensions of AdS_5 x S^5 and the Plane-wave Superalgebras and Their Realization in the Tiny Graviton Matrix Theory

    Full text link
    In this paper we consider all consistent extensions of the AdS_5 x S^5 superalgebra, psu(2,2|4), to incorporate brane charges by introducing both bosonic and fermionic (non)central extensions. We study the Inonu-Wigner contraction of the extended psu(2,2|4) under the Penrose limit to obtain the most general consistent extension of the plane-wave superalgebra and compare these extensions with the possible BPS (flat or spherical) brane configurations in the plane-wave background. We give an explicit realization of some of these extensions in terms of the Tiny Graviton Matrix Theory (TGMT)[hep-th/0406214] which is the 0+1 dimensional gauge theory conjectured to describe the DLCQ of strings on the AdS_5 x S^5 and/or the plane-wave background.Comment: 27 pages, LaTe

    Paired donor and recipient immunophenotyping in allogeneic hematopoietic stem cell transplantation: a cellular network approach

    Get PDF
    Success and complications of allogeneic hematopoietic stem cell transplantation (alloHSCT) are closely connected to the transferred graft and immune reconstitution post alloHSCT. Due to the variety of immune cells and their distinct roles, a broad evaluation of the immune cellular network is warranted in mobilization and reconstitution studies in alloHSCT. Here, we propose a comprehensive phenotypic analysis of 26 immune cell subsets with multicolor flow cytometry from only 100µl whole blood per time point. Using this approach, we provide an extensive longitudinal analysis of almost 200 time points from 21 donor-recipient pairs. We observe a broad mobilization of innate and adaptive immune cell subsets after granulocyte-colony stimulating factor (G-CSF) treatment of healthy donors. Our data suggest that the relative quantitative immune cell subset composition in recipients approaches that of healthy donors from day +180 post alloHSCT onwards. Correlation of donor and recipient cell counts reveals distinct association patterns for different immune cell subsets and hierarchical clustering of recipient cell counts identifies distinct reconstitution groups in the first month after transplantation. We suggest our comprehensive immune subset analysis as a feasible and time efficient approach for a broad immune assessment for future clinical studies in the context of alloHSCT. This comprehensive cell composition assessment can be a critical step towards personalized graft composition strategies and individualized therapy management in areas such as GvHD prophylaxis in the highly complex immunological setting of alloHSCT

    Association of Serum Ferritin Levels Before Start of Conditioning With Mortality After alloSCT - A Prospective, Non-interventional Study of the EBMT Transplant Complications Working Party

    Get PDF
    Elevated serum ferritin levels occur due to iron overload or during inflammation and macrophage activation. A correlation of high serum ferritin levels with increased mortality after alloSCT has been suggested by several retrospective analyses as well as by two smaller prospective studies. This prospective multicentric study aimed to study the association of ferritin serum levels before start of conditioning with alloSCT outcome. Patients with acute leukemia, lymphoma or MDS receiving a matched sibling alloSCT for the first time were considered for inclusion, regardless of conditioning. A comparison of outcomes between patients with high and low ferritin level was performed using univariate analysis and multivariate analysis using cause-specific Cox model. Twenty centers reported data on 298 alloSCT recipients. The ferritin cut off point was determined at 1500 mu g/l (median of measured ferritin levels). In alloSCT recipients with ferritin levels above cut off measured before the start of conditioning, overall survival (HR = 2.5, CI = 1.5-4.1, p = 0.0005) and progression-free survival (HR = 2.4, CI = 1.6-3.8, p <0.0001) were inferior. Excess mortality in the high ferritin group was due to both higher relapse incidence (HR = 2.2, CI = 1.2-3.8, p = 0.007) and increased non-relapse mortality (NRM) (HR = 3.1, CI = 1.5-6.4, p = 0.002). NRM was driven by significantly higher infection-related mortality in the high ferritin group (HR = 3.9, CI = 1.6-9.7, p = 0.003). Acute and chronic GVHD incidence or severity were not associated to serum ferritin levels. We conclude that ferritin levels can serve as routine laboratory biomarker for mortality risk assessment before alloSCT.Peer reviewe

    Single-cell clonal tracking of persistent T-cells in allogeneic hematopoietic stem cell transplantation

    Get PDF
    The critical balance between intended and adverse effects in allogeneic hematopoietic stem cell transplantation (alloHSCT) depends on the fate of individual donor T-cells. To this end, we tracked αβT-cell clonotypes during stem cell mobilization treatment with granulocyte-colony stimulating factor (G-CSF) in healthy donors and for six months during immune reconstitution after transfer to transplant recipients. More than 250 αβT-cell clonotypes were tracked from donor to recipient. These clonotypes consisted almost exclusively of CD8+ effector memory T cells (CD8TEM), which exhibited a different transcriptional signature with enhanced effector and cytotoxic functions compared to other CD8TEM. Importantly, these distinct and persisting clonotypes could already be delineated in the donor. We confirmed these phenotypes on the protein level and their potential for selection from the graft. Thus, we identified a transcriptional signature associated with persistence and expansion of donor T-cell clonotypes after alloHSCT that may be exploited for personalized graft manipulation strategies in future studies

    Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone marrow stromal cells via Notch/miR-223

    No full text
    Bone marrow mesenchymal stromal cells (BMMSCs) represent a crucial component of multiple myeloma (MM) microenvironment supporting its progression and proliferation. Recently, microRNAs have become an important point of interest for research on micro-environmental interactions in MM with some evidence of tumor supportive roles in MM. In this study, we examined the role of miR-223 for MM support in BMMSCs of 56 patients with MM (MM-BMMSCs). miR-223 expression in MM-BMMSCs was reduced by the presence of MM cells in vitro in a cell-contact dependent manner compared to mono-cultured MM-BMMSCs. Co-cultivation of MM cells and MM-BMMSCs induced activation of notch amongst others via jagged-2/notch-2 leading to increased expression of Hes1, Hey2, or Hes5 in both cell types. Cultivation of MM-BMMSCs with increasing levels of recombinant jagged-2 reduced miR-223 and increased Hes1 levels in a concentration-dependent manner. Transient reduction of miR-223 levels increased VEGF and IL-6 expression and secretion by MM-BMMSCs. In addition, reduction of miR-223 degraded the osteogenic differentiation potential of MM-BMMSCs. Inhibition of notch signaling induced apoptosis in both MM cells and MM-BMMSCs. Furthermore, it increased miR-223 levels and reduced expression of VEGF and IL-6 by both cell types. These data provide first evidence that miR-223 participates in different MM supporting pathways in MM-BMMSCs inlcuding regulation of cytokine secretion and expression as well as osteogenic differentiation of MM-BMMSCs. More insights on the role of miR-223 in MM-BMMSCs and in cellular interactions between MM cells and MM-BMMSCs could provide starting points for a more efficient anti-myeloma treatment by targeting of notch signaling

    Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits

    No full text
    Background: Sensitivity of tumor cells to induction of apoptosis by proteasome inhibitors varies greatly. This study was undertaken to investigate the sensitivity of neoplastic B cells and solid tumor cells to proteasome inhibition with respect to constitutive expression levels of proteasome subunits. Methods: Twelve neoplastic B-cell lines and 12 solid tumor cell lines were assessed for their expression levels of proteasome subunits by using quantitative reverse transcriptase-polymerase chain reaction analysis and were assessed for their sensitivity to the proteasome inhibitors PS-341 and lactacystin by using a flow cytometry assay that detected activated caspases. Results: The neoplastic B-cell lines were categorized into 3 groups representing refractory cell lines, cell lines with moderate sensitivity, and cell lines with high sensitivity. Correlating expression levels of proteasome subunits with sensitivity to proteasome inhibition indicated that refractory B cells exhibited lower expression levels of the standard subunit beta2 and of the immunoproteasome subunit LMP2 compared with sensitive B cell lines. Compared with neoplastic B cells solid tumor cells were less sensitive. They expressed the immunoproteasome subunits LMP2, LMP7 and MECL-1 and the standard subunit beta2 clearly below the median of the expression level of the sensitive B cell lines. IFN-gamma pretreatment enhanced sensitivity to PS-341 in 50% of the tumor cell lines, potentially related to the induction of immunoproteasomes. Conclusions: The results of this study indicated that sensitivity to proteasome inhibition is correlated with expression levels of proteasome subunits, which determine the enzymatic activity of the proteasome. Combining PS-341 with IFN-gamma may enhance its clinical efficacy

    A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma

    No full text
    Multiple myeloma (MM) typically follows a relapsing course with many patients requiring multiple therapies. This single-arm phase 2 study prospectively evaluated the efficacy and safety of bortezomib retreatment in MM patients who had relapsed after achieving at least a partial response ( 65 PR) to prior bortezomib-based therapy. Patients aged 65 18 years, with measurable, secretory MM, who relapsed 65 6 months after prior bortezomib treatment were eligible. Patients received up to eight cycles of bortezomib (\ub1 dexamethasone). The primary endpoint was best confirmed response at retreatment; secondary endpoints included duration of response (DOR), time to progression (TTP), and safety. Adverse events (AEs) were graded by National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. A total of 130 patients (median of two prior lines of therapy) were enrolled and received retreatment. At retreatment, 28% and 72% of patients received bortezomib and bortezomib-dexamethasone, respectively. Overall response rate was 40%. In patients who achieved 65 PR, median DOR and TTP were 6.5 and 8.4 months, respectively. Thrombocytopenia was the most common grade 65 3 AE (35%). Forty percent of patients experienced neuropathy events, which improved and resolved in a median of 1.5 and 8.9 months, respectively. In conclusion, bortezomib retreatment was effective and tolerable in relapsed MM patients, with no evidence of cumulative toxicities
    corecore