11 research outputs found

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    Waveform symmetry properties and phase noise in oscillators

    No full text

    Pengaruh Bauran Komunikasi Pemasaran Terhadap Keputusan Pembelian (Studi Kasus pada Produk Mie Instant Indofood Semarang)

    Get PDF
    The aim of the research to know the influence of the integrated communication marketing toward  the decision of purchasing  lndofood  instant noodles product  either partial  or simultant.  This research used survey method and the analysis  tool Double Regression.   It is  concluded  that,  as  a partial,  there  are four   of five  independent variables   which   have  a  significant   influence  toward  the  decision   of   consumer purchasing  Indofood noodles instant product.  These are advertising, personal selling, sales  promotion   and  public  relation.   Direct  marketing  doesn't   have  a  significant influence toward the decision of purchasing  lndofood noodles instant product. Simultaneously,  independent, variable has a significant influence toward the decision of a noodles instant product

    On the origin & thermal stability of Arrokoth's and Pluto's ices

    No full text
    International audienceWe discuss in a thermodynamic, geologically empirical way the long-term nature of the stable majority ices that could be present in Kuiper Belt Object 2014 MU69 after its 4.6 Gyr residence in the EKB as a cold classical object. Considering the stability versus sublimation into vacuum for the suite of ices commonly found on comets, Centaurs, and KBOs at the average ~40K sunlit surface temperature of MU69 over Myr to Gyr, we find only 3 common ices that are truly refractory: HCN, CH3OH, and H2O (in order of increasing stability). NH3 and H2CO ices are marginally stable and may be removed by any positive temperature excursions in the EKB, as produced every 1e8 - 1e9 yrs by nearby supernovae and passing O/B stars. To date the NH team has reported the presence of abundant CH3OH and evidence for H2O on MU69s surface (Lisse et al. 2017, Grundy et al. 2020). NH3 has been searched for, but not found. We predict that future absorption feature detections will be due to an HCN or poly-H2CO based species. Consideration of the conditions present in the EKB region during the formation era of MU69 lead us to infer that it formed "in the dark", in an optically thick mid-plane, unable to see the nascent, variable, highly luminous Young Stellar Object-TTauri Sun, and that KBOs contain HCN and CH3OH ice phases in addition to the H2O ice phases found in their Short Period comet descendants. Finally, when we apply our ice thermal stability analysis to bodies/populations related to MU69, we find that methanol ice may be ubiquitous in the outer solar system; that if Pluto is not a fully differentiated body, then it must have gained its hypervolatile ices from proto-planetary disk sources in the first few Myr of the solar systems existence; and that hypervolatile rich, highly primordial comet C/2016 R2 was placed onto an Oort Cloud orbit on a similar timescale

    Pluto's haze as a surface material

    No full text
    International audiencePluto’s atmospheric haze settles out rapidly compared with geological timescales. It needs to be accounted for as a surface material, distinct from Pluto’s icy bedrock and from the volatile ices that migrate via sublimation and condensation on seasonal timescales. This paper explores how a steady supply of atmospheric haze might affect three distinct provinces on Pluto. We pose the question of why they each look so different from one another if the same haze material is settling out onto all of them. Cthulhu is a more ancient region with comparatively little present-day geological activity, where the haze appears to simply accumulate over time. Sputnik Planitia is a very active region where glacial convection, as well as sublimation and condensation rapidly refresh the surface, hiding recently deposited haze from view. Lowell Regio is a region of intermediate age featuring very distinct coloration from the rest of Pluto. Using a simple model haze particle as a colorant, we are not able to match the colors in both Lowell Regio and Cthulhu. To account for their distinct colors, we propose that after arrival at Pluto’s surface, haze particles may be less inert than might be supposed from the low surface temperatures. They must either interact with local materials and environments to produce distinct products in different regions, or else the supply of haze must be non-uniform in time and/or location, such that different products are delivered to different places

    Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument

    No full text
    International audienceThe data returned from NASA's New Horizons spacecraft have given us an unprecedented, detailed look at the Pluto system. New Horizons' Ralph/MVIC (Multispectral Visible Imaging Camera) is composed of 7 independent CCD arrays on a single substrate. Among these are a red channel (540-700 nm), near-infrared channel (780-975 nm), and narrow band methane channel (860-910 nm). By comparing the relative reflectance of these channels we are able to produce high-resolution methane "equivalent width" (based on the 890 nm absorption band) and spectral slope maps of Pluto's surface. From these maps we can then quantitatively study the relationships between methane distribution, redness, and other parameters like latitude and elevation. We find Pluto's surface to show a great diversity of terrains, particularly in the equatorial region between 30°N and 30°S latitude. Methane "equivalent width" also shows some dependence on elevation (while spectral slope shows very little)
    corecore