67 research outputs found

    A multiā€proxy record of abrupt cooling events during the Windermere Interstadial at Crudale Meadow, Orkney, UK

    Get PDF
    Three clearly defined abrupt cooling events (ACEs) can be observed within Greenland Interstadial (GI)ā€1 in the Greenland iceā€core records. However, the spatial variation in amplitude and timing of these ACEs is poorly understood due to the paucity of wellā€dated records with quantified temperature reconstructions. This study presents highā€resolution chironomidā€inferred July air temperature (TJul) and oxygen isotope (Ī“18O) records from Crudale Meadow (Orkney Isles, UK). Three centennialā€scale ACEs punctuate the Windermere Interstadial at Crudale Meadow. The largest ACE shows an amplitude of 5.4 Ā°C and a 1% isotopic decline and is centred on ~14.0 ka BP, consistent with the timing of the GIā€1d event in the Greenland stratigraphy. The two other observed ACEs are of smaller magnitude and are centred on ~13.6 ka BP and ~13.2 ka BP, with these smaller magnitude events tentatively correlated with the GIā€1cii and GIā€1b events, respectively, but lack sufficient chronological constraint to fully assess their timing. When comparing the Crudale Meadow record with other locations in the British Isles a strong relationship can be observed between the magnitude of TJul cooling and latitude, with a reduced signal in more southerly locations, indicating that oceanic forcing may be a key driver of the ACEs

    Tephrochronology of core PRAD 1-2 from the Adriatic Sea: insights into Italian explosive volcanism for the period 200ā€“80Ā ka

    Get PDF
    Core PRAD 1-2, located on the western flank of the Mid-Adriatic Deep, was investigated for tephra content within the part of the sequence assigned on biostratigraphic and sapropel-layer stratigraphy to MIS 5 and 6 (ca. 80ā€“200 ka BP). A total of 11 discrete tephra layers are identified, 8 visible and 3 cryptotephra layers. 235 geochemical measurements obtained from individual glass shards using WDS-EPMA enabled 8 of the 11 tephras to be correlated to known eruption events, 5 of which are represented in the Lago Grande di Monticchio (LGdM) regional tephra archive sequence. Three of these layers are recognised ultra-distally for the first time, extending their known distributions approximately 210 km further north. The results provide an independent basis for establishing an age-depth profile for the MIS 5ā€“6 interval in the PRAD 1-2 marine record. This approach allowed age estimates to be interpolated for the tephra layers that could not be correlated to known events. It also provides an independent test of, and support for, the broad synchroneity of sapropel-equivalent (S-E) events in the Adriatic Sea with the better-developed sapropel layers of the eastern Mediterranean, proposed by Piva et al. (2008a)

    Environment and Rural Affairs Monitoring & Modelling Programme - ERAMMP Report-60: ERAMMP Integrated Modelling Platform (IMP) Land Use Scenarios

    Get PDF
    Six scenarios consisting of changes in farm-gate prices (T1 to T6) have been applied to the ERAMMP Integrated Modelling Platform (IMP) to simulate impacts on land use change, biodiversity and ecosystem services (carbon, water quality and air quality). The scenarios were based on discussions held between stakeholders in the Evidence and Scenario subgroup (Roundtable Wales and Brexit1) and Welsh Government (WG) policy officials. These discussions took place in late 2020 before the arrangements for the UK leaving the EU were agreed, therefore are based on broad assumptions around the detail of the trade agreement with the EU as well as other third countries including Australia, New Zeland and USA. It is important to note that the outputs of these discussions which were used as inputs into the ERAMMP IMP may therefore not accurately reflect the outcomes achieved within the finalised trade agreements. The T1 scenario assumes no EU trade deal and trade liberalisation, with no tariffs applied to imported products and T2 an EU trade deal with no change to the trade arrangements with third countries. These two scenarios used the changes to farm-gate prices modelled by FAPRI2. The assumptions used in the T3 to T6 scenarios were based on expert opinion from the stakeholder group, and include impacts on farm-gate prices which potentially could have resulted from different combinations of trade deals with New Zealand, Australia and USA. Scenarios which include ā€œno EU dealā€ options (T1 and T4) are no longer relevant. In no way whatsoever do T1, T3, T4, T5 and T6 represent a WG position; our understanding of the nature and impact of new and emerging trade deals has evolved significantly and the WG Trade Policy Team lead in this area. The objective of this work was to gain an early understanding of how changes in farm-gate prices potentially resulting from trading relationships may influence land use and subsequently effect entry into the Sustainable Farming Scheme. We note that many other factors are also likely to influence Welsh farmgate prices, such as (but not limited to), currency exchange rates, energy prices and extreme weather events in other parts of the world. This report provides an overview of the land use implications of all these scenarios, but focuses on the T2 scenario, which represents an EU Trade Deal. This T2 scenario is being used as the counterfactual scenario against which the costs and benefits of the land use implications of the proposed Sustainable Farming Scheme will be assessed in the Regulatory Impact Assessment for the proposed Agricultural Bill. This includes the estimated environmental outcomes of the EU Trade Deal scenario and, where the ERAMMP IMP has attached monetary valuations to these, the value of these outcomes to society. In the Cost Benefit Analysis, these monetary values will inform the overall estimated Net Present Value (NPV) of this business-as-usual counterfactual. The IMP involves many assumptions and these need to be borne in mind when interpreting and using its outcomes. By necessity, all models are a simplification of the real situation, but can still provide very useful insights if applied for a specific purpose and with caution. The collaborative and iterative consortium-based approach to co-designing the IMP has meant that Welsh Government and IMP teams have clear, open channels of communication for asking questions. This ensures that the modelling represents government aspirations as well as possible and the limits of the approach are well understood. IMP outputs for the T2 scenario show that some simulated full-time farms (>1 FTE labour) come under economic pressure (7%) and are simulated to be unable to produce a sufficient Farm Business Income to be economically viable. For these farm types, no options to transition to a more alternative profitable farm type are available and they are assumed to leave full-time agriculture. A greater number of farms transition to dairying resulting in a 75% increase in the number of dairy farms. This is associated with large increases in the number of dairy cattle (73%) and reductions in sheep (-34%). A general intensification of grassland systems is simulated resulting from the farm type transitions, with a 66% increase in temporary grasslands and a 21% decrease in permanent grasslands. Overall, these changes in agriculture and land use are simulated to lead to mixed, but predominantly negative, effects on biodiversity, increases in GHG emissions and deterioration in air and water quality. The T2 scenario predicts the least change in agriculture out of the six scenarios. T1 simulates the greatest impacts on agriculture due to significant farm-gate price reductions across dairy, beef and sheep systems, with a large number of full-time farms leaving agriculture. This leads to large increases in woodland area and generally positive effects on biodiversity and ecosystem services. T3 and T4 also simulate large impacts on agriculture. These are associated with significant farm transitions to dairy (due to increases in milk prices and significant decreases in beef and lamb prices) resulting in larger increases in GHG emissions and greater declines in air and water quality, compared to the T2 scenario. The T5 and T6 scenarios fall between these extremes, with T6 projecting the second greatest impacts on agriculture (after T1) in terms of farms under pressure. These simulated changes in agriculture are associated with net benefits for air and water quality, but net costs for GHG emissions; although these costs are lower than for scenarios T3-T5

    Late Holocene vegetation and palaeoenvironmental history of the Dunadd area, Argyll, Scotland: chronology of events

    No full text
    This paper focuses on the chronology and environmental significance of a sediment sequence from an alluvial locality in the vicinity of the historic site of Dunadd, Scotland. It outlines the rationale and statistical validity of an age model derived for a sequence of floodplain sediments from which detailed pollen-stratigraphical and plant macrofossil records have been derived. A series of radiocarbon dates are calibrated using a Bayesian modelling approach, the results of which can be refined by incorporating two independent age estimates based on tephra layers of known age. Analysis of the entire floodplain sequence for volcanic glass shards revealed the presence of discrete but geochemically very similar tephra layers within the upper (late Holocene) part of the sequence. Comparison with published geochemical data obtained from Icelandic tephras of historical age indicates strong statistical correlations with the Hekla 1947 AD and Hekla 1510 AD. While the Hekla 1510 AD tephra has previously been reported from sites within Britain and Ireland, the Dunadd sequence affords the first record of the Hekla 1947 AD tephra layer within Scotland. When the ages and stratigraphic positions of both tephra layers are incorporated into the Bayesian age model, an overall centennial to decadal precision for the late Holocene is achieved, with archaeological and environmental transitions discriminated with highest-likelihood age uncertainty ranges of 20ā€“50 years at 95% confidence. The local environmental record is assessed in the light of this new chronological framework: the data support previously reported proposals for two periods of significant climatic deterioration with increased wetness, the first during the early Medieval period and the second during the late 16th and 17th centuries AD
    • ā€¦
    corecore