11 research outputs found

    Mass Flows of X-ray Contrast Media and Cytostatics in Hospital Wastewater

    No full text
    Little is known about the significance of hospitals as point sources for emission of organic micropollutants into the aquatic environment. A mass flow analysis of pharmaceuticals and diagnostics used in hospitals was performed on the site of a representative Swiss cantonal hospital. Specifically, we analyzed the consumption of iodinated X-ray contrast media (ICM) and cytostatics in their corresponding medical applications of radiology and oncology, respectively, and their discharge into hospital wastewater and eventually into the wastewater of the municipal wastewater treatment plant. Emission levels within one day and over several days were found to correlate with the pharmacokinetic excretion pattern and the consumed amounts in the hospital during these days. ICM total emissions vary substantially from day to day from 255 to 1259 g/d, with a maximum on the day when the highest radiology treatment occurred. Parent cytostatic compounds reach maximal emissions of 8−10 mg/d. A total of 1.1%, 1.4%, and 3.7% of the excreted amounts of the cytostatics 5-fluorouracil, gemcitabine, and 2â€Č,2â€Č-difluorodeoxyuridine (main metabolite of gemcitabine), respectively, were found in the hospital wastewater, whereas 49% of the total ICM was detected, showing a high variability among the compounds. These recoveries can essentially be explained by the high amount administered to out-patients (70% for cytostatics and 50% for ICM); therefore, only part of this dose is expected to be excreted on-site. In addition, this study emphasizes critical issues to consider when sampling in hospital sewer systems. Flow proportional sampling over a longer period is crucial to compute robust hospital mass flows

    Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring

    Get PDF
    Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17 alpha-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. (C) 2016 Elsevier Ltd. All rights reserved
    corecore