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Abstract 39 

Bioassays are particularly useful tools to link the chemical and ecological assessments in water 40 

quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse 41 

organisms, and account for risks posed by non-target compounds and mixtures. Many tests are 42 

already applied in chemical and waste assessments, and stakeholders from the science-police 43 

interface have recommended their integration in regulatory water quality monitoring. Still, there is 44 

a need to address bioassay suitability to evaluate water samples containing emerging pollutants, 45 

which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) 46 

verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories 47 

following their own protocols, would produce comparable results when applied to evaluate 48 

blinded samples consisting of a pristine water extract spiked with four emerging pollutants as 49 

single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-50 

nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different 51 

trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro 52 

estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery 53 

presented complementary sensitivity and specificity to evaluate the different blinded water extract 54 

spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae>daphnids>FET) and 55 

acridine (FET>daphnids>algae) spikes, confirming the complementary role of the three taxa for 56 

water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the 57 

respective mechanism-specific effects of spikes even when non-specific toxicity occurred in 58 

mixture. For estrogenicity, although differences were observed between assays and models, EE2-59 

spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency 60 

factors reliably reflected the sample content. In the Ames, strong revertant induction occurred 61 

following 3-NBA-spike incubation with the TA98 strain, which was of lower magnitude after 62 

metabolic transformation and when compared to TA100. Differences in experimental protocols, 63 

model organisms, and data analysis can be sources of variation, indicating that respective 64 
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harmonised standard procedures should be followed when implementing bioassays in water 65 

monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, 66 

the present study is an important step towards the implementation of bioanalytical monitoring 67 

tools in water quality assessment and monitoring. 68 

 69 

Keywords: triclosan, acridine, 17α-ethinylestradiol, 3-nitrobenzanthrone, organism-level toxicity, 70 

mechanism-specific toxicity 71 

  72 
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1. Introduction 73 

Water quality investigation and monitoring in Europe and worldwide is facing a challenge. 74 

There is societal, regulatory and scientific consensus on the urgent need to achieve good water 75 

quality in national and transboundary river basins. Meanwhile, an immense variety of 76 

contaminants is constantly reaching aquatic systems, which complicates the identification of 77 

drivers of chemical toxicity to be routinely monitored (von der Ohe et al. 2011). Further, there is a 78 

lack of direct indicators on the regulatory level to verify the biological relevance of chemical 79 

monitoring in different water bodies. While the ecological status assessment is certainly of high 80 

environmental relevance, it is based primarily on biodiversity indices that often do not present 81 

consistency with respective chemical monitoring (Wernersson et al. 2015). Therefore, 82 

complementary monitoring strategies are required to achieve the Water Framework Directive 83 

(WFD) aim to maintain and improve water quality in Europe (EC 2000).  84 

Effect-based tools such as bioassays and biomarkers are particularly useful to bridge the gap 85 

between chemical contamination and ecological status, since they can cover a broad range of 86 

toxicity mechanisms in diverse organisms, and account for additional risks posed by non-target 87 

compounds and mixtures. Bioassays already provide the regulatory basis to derive environmental 88 

quality standards (EQS) (EC 2011) and to evaluate pelagic toxicity under the REACH 89 

authorization process (ECHA 2014). They are also applied to assess effluents from domestic 90 

wastewater treatment plants and industrial sectors (OSPAR 2007, Gartiser et al. 2009). Moreover, 91 

the recommendation to integrate bioassays in regulatory water quality monitoring (Hecker and 92 

Hollert 2011, Hamers et al. 2013, Wernersson et al. 2015) is supported by many tests being 93 

available as standardized methods (OECD guidelines, ISO standards). However, there are still 94 

open questions that prevent their application in effect-based monitoring of water bodies. A major 95 

issue is whether reliable results can be achieved when evaluating effects of samples containing 96 

diverse aquatic pollutants and chemical mixtures. Particularly, the evaluation of emerging 97 
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contaminants, such as pharmaceuticals, personal care and disinfection products, is a current 98 

priority in regulatory water quality monitoring (Loos et al. 2009, von der Ohe et al. 2012).  99 

In response to that, the present interlaboratory study (ILS) was developed as a collaborative 100 

exercise to investigate whether a battery of miniaturized bioassays would produce consistent 101 

results for the evaluation of blinded samples containing pristine water extract spiked with 102 

representative emerging pollutants as single-chemicals or mixtures. These included:  103 

(i) Triclosan, a chlorinated phenoxy phenol used as biocide in personal care and household 104 

products, already suggested as candidate priority substance (von der Ohe et al. 2012);  105 

(ii)  17α-ethinylestradiol (EE2), a synthetic estrogenic human and veterinary pharmaceutical 106 

recently included in the European chemical watch list for water quality monitoring (EC 2013, 107 

Kunz et al. 2015);  108 

(iii)  Acridine, an heterocyclic aromatic hydrocarbon of industrial origin and a carbamazepine 109 

transformation product found in aquatic sediments and groundwater (Hartnik et al. 2007, de Voogt 110 

and Laane 2009);  111 

(iv) 3-Nitrobenzanthrone (3-NBA), a potent mutagenic diesel exhaust component that occurs in 112 

aquatic sediments and rainwater (Murahashi et al. 2003, Lübcke-von Varel et al. 2012).  113 

The water extract included a realistic environmental matrix as a sample component, increasing 114 

the relevance of the study for water quality assessment. Methods evaluated effects on organisms 115 

from three trophic levels (algae, daphnids, fish) and mechanism-specific effects using in vitro 116 

estrogenicity and mutagenicity assays. The resulting interlaboratory trial brings a novel approach 117 

since, with very few exceptions (Carvalho et al. 2014, Escher et al. 2014), previous bioassay ILS 118 

focused on only one or few methods, a single mode of action, or single chemical or sample (Hoss 119 

et al. 2012, Reifferscheid et al. 2012, Feiler et al. 2014). Finally, a unique aspect of this study that 120 

is reflected in the discussion is the clear aim to promote the regulatory use of bioassays for water 121 

quality monitoring at the European policy-makers level.  122 
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 123 

2. Material and Methods 124 

2.1 Chemicals  125 

Information on the test chemicals is provided in Table 1. 126 

2.2 Participant institutes and design of study 127 

The study was coordinated by the Department of Ecosystem Analysis, Institute for 128 

Environmental Research, RWTH Aachen University, Germany. The 11 participant laboratories 129 

(Table S1, S.I.) are associates of the NORMAN working group (WG) on bioassays and 130 

biomarkers. The battery composition was defined during a WG meeting in agreement with the 131 

different participants, considering the relevance of different bioassays for water quality 132 

assessment. After, the WG participants responded to a query regarding their interest in performing 133 

the different tests. Finally, three to four laboratories were selected to perform each bioassay, with 134 

inclusion of all interested.  135 

2.3 Battery of bioassays 136 

The bioassay battery (Table 2, Table S2) evaluated effects on organisms from different trophic 137 

levels: unicellular green algae growth inhibition (Algae), daphnid immobilization (Daphnia), and 138 

zebrafish embryo lethality and morphological effects (FET). Mechanism-specific assays evaluated 139 

estrogenicity (ER-Luc and YES) and mutagenicity (Ames). Experiments were performed in 140 

miniaturized format following static exposure without vessel pre-incubation with test solutions.  141 

2.4 Water sample extract spiking  142 

A 180 L water sample was collected at the pristine creek Wormsgraben (Harz Mountains, 143 

Germany), transported to the laboratory in stainless steel drums, extracted using large-volume 144 

solid phase extraction (Schulze et al. in preparation), and concentrated in 18 mL methanol. The 145 
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method is described in the supplementary material. The water extract was evaluated in some 146 

bioassays (Table S3) by the coordinator. 147 

Chemicals for spiking (Table 1) were selected due to relevance as emerging pollutants and 148 

bioactivity. Effect-data from previous studies and own preliminary tests (Table S3) provided the 149 

basis for spiking composition decision. Two or three spikes were designed per assay (Table 3) 150 

having either the most active toxicant(s) for each method or a final chemical mixture containing a 151 

fixed ratio of respective single chemical(s). Concentrations aimed to produce full dose-response 152 

curves considering as maximum test concentration 1 µLextract/mLmedium, corresponding to an 153 

enrichment factor of 10 (10 mLwater-equivalent/mLmedium). Spikes for Daphnia, FET, ER-Luc and 154 

Ames were prepared by water extract evaporation to dryness, addition of DMSO as carrier, and 155 

spiking of chemicals using stock solutions in DMSO followed by separation in aliquots for each 156 

participant. For algae and YES, the water extract was spiked with the chemicals in methanol, 157 

divided in aliquots, and evaporated to dryness. Aliquots were coded and shipped at room 158 

temperature to the laboratories, who were not informed on sample composition during the testing 159 

period. DMSO was also provided for solvent control conditions. Samples were then stored at 4°C. 160 

2.5 Exposure setup and tested concentration ranges  161 

Experiments were repeated mostly three times per bioassay, in each test with 3-4 replicate 162 

wells/vessels for each test condition following exposure setups described in Table 3. 163 

2.6 Integrated data and statistical analysis   164 

Bioassay results (expressed as described in Table 2) were evaluated following the same data 165 

preparation and statistical analysis methods. Results from experimental replicates were pooled and 166 

EC50 values were calculated for grouped experiments either by 2-parameter Weibull function 167 

using R language package (Daphnia), two parameter log-logistic curve from 0 to 100% with the 168 

two adjustable parameters being slope and EC50 by GraphPad Prism 6 (algae, FET, Ames), or 169 

four-parameter log-logistic function with GraphPad (ER-Luc, YES). Differences between logEC50 170 
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values from different laboratories were compared by t-test or one-way ANOVA followed by 171 

Tukey’s multiple comparisons test. EC50 values obtained in µLextract/mLbioassay (S.I.) were converted 172 

to nominal concentrations of individual chemicals contained in each sample. For algae, Daphnia 173 

and FET, ratios between EC50 (µLextract/mLbioassay) values of single-chemical and mixture spikes 174 

(EC50-single:EC50-mixture) were calculated. That allowed comparing single- and mixture-spike effects, 175 

since the mixture contained a fixed ratio of triclosan and acridine. For ER-Luc and YES, toxic-176 

equivalent factors to respective standard chemical, 17β-estradiol (E2) or EE2, were obtained. 177 

Relative estrogenic potencies are expressed as E2 or EE2 equivalents (EEQ), calculated as a ratio 178 

between the EC50 of the reference compound and the EC50 of the spiked sample: EEQ= EC50-E2 or 179 

EE2/EC50-sample. The only exception was the water extract, for which the EEQ was obtained with the 180 

PC10 approach (Besselink 2015). 181 

 182 

3. Results and Discussion  183 

Differences between assay results are indicated either as not significant (n.s.) or according to p 184 

values. Effect-concentration values for different tests and laboratories are detailed in S.I. 185 

3.1 Toxic effects on aquatic organisms  186 

Aquatic organisms differed in terms of sensitivity to triclosan (algae>daphnids>FET) and 187 

acridine (FET>daphnids>algae) spikes. Present EC50 nominal (EC50-nom) for single-chemical 188 

spikes (Fig.1) were in same range as literature data for tests performed in microtiter plates (Table 189 

S4) but tended to be higher than literature values based on measured concentrations or for 190 

experiments in higher medium volume.  191 

3.1.1 Algae test  192 

The OECD/ISO Algae test was the most sensitive aquatic organism assay to triclosan, in 193 

agreement with freshwater algal growth being more sensitive than endpoints in bacteria, protozoa, 194 

macrophytes, daphnids, amphibians and fish (Orvos et al. 2002, Tatarazako et al. 2004, Harada et 195 
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al. 2008, Tamura et al. 2013). Detected 72 h growth-inhibition EC50-nom (14.7 and 25.7 µg/L, n.s.) 196 

are in the same range as previous 72 and 96 h EC50-nom for P. subcapitata determined also in 96-197 

well plates (Harada et al. 2008, Rosal et al. 2010). However, our values are 3-50 times higher than 198 

results obtained by incubation in 20-100 ml of medium (i.e. 100-500 times the present volume) 199 

(Orvos et al. 2002, Tatarazako et al. 2004, Yang et al. 2008, Tamura et al. 2013). Since triclosan is 200 

relatively hydrophobic, adsorption to the plate material could have occurred (Rojíčková et al. 201 

1998). Triclosan is also prone to phototransformation (Tixier et al. 2002), which could be another 202 

source of variability. The OECD TG (2011) already discusses the interference of these aspects 203 

with single-chemicals, which can provide a basis for investigating the stability of water extracts 204 

components during exposure. Finally, the water extract matrix could have decreased triclosan 205 

bioavailability due to its high sorption capacity to organic matter (Reiss et al. 2002).  206 

For acridine, even if our EC50-nom differed (5.9 and 4.1 mg/L, p<0.01), values were in good 207 

agreement with previous 72 h EC50-nom for Desmodesmus subspicatus following exposure in 24-208 

well plates (Eisentraeger et al. 2008). However, values were circa one order of magnitude higher 209 

than 96 h EC50-meas for Selenastrum capricornutum (current P. subcapitata) exposed in 100-250 210 

mL medium (Blaylock et al. 1985, Dijkman et al. 1997). Sensitivity differences are not known for 211 

acridine due to non-specific toxicity mechanism (Dijkman et al. 1997). Decrease in exposure 212 

concentration instead may be relevant, since 40-60% losses occurred already prior to exposure 213 

start, followed by additional circa 10% decrease during 72 h incubation in 24-well plates 214 

(Eisentraeger et al. 2008). Therefore for acridine chemical losses during sample shipping, 215 

handling and experiments could have interfered with effective test concentrations.  216 

In the combined algae assay, 24 h growth inhibition EC50-nom values for triclosan (65.0 and 56.2 217 

µg/L, n.s.) and acridine (13.7 and 29.6, p<0.001) spikes were 2-3 and 2-7 times higher than for the 218 

OECD tests, respectively. That indicates time-dependency of effects for both chemicals on algae 219 

growth. No tendency for specific photosynthesis inhibition was observed since the photosynthesis 220 
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endpoint was equally or less sensitive than growth inhibition (results not shown) (Escher et al. 221 

2008, Tang and Escher 2014). Still, this is a very relevant endpoint since many current WFD 222 

priority and emerging compounds present this mode of action. 223 

EC50-single:EC50-mixture ratios for triclosan reached values near or less than 1 and were lower than 224 

those for acridine, suggesting its effects were prevalent in the mixture. EE2 is not considered to 225 

have caused substantial growth inhibition, since the higher exposure concentration (0.1 mg/L) was 226 

seven to ten-fold lower than previous NOEC (0.71 mg/L) or LOEC (1.2 mg/L) (Maes et al. 2014). 227 

3.1.2 Daphnia test  228 

The OECD/ISO Daphnia immobilization test presented intermediate sensitivity to both 229 

triclosan- and acridine-spikes. Present triclosan 48 h immobilization EC50-nom (351 to 516 µg/L, 230 

n.s.) are in similar range as previous studies (Orvos et al. 2002, Harada et al. 2008, Peng et al. 231 

2013). The compound was also found to cause effects in D. magna reproduction test lasting 21 232 

days, with LOEC values for reduced number of neonates being circa half of respective 48 h 233 

immobilization EC50 (Orvos et al. 2002, Peng et al. 2013).  234 

Also for acridine the obtained EC50-nom (3.0 to 5.1 mg/L, n.s.) agree with previous results 235 

(Blaylock et al. 1985, Feldmannová et al. 2006, Eisentraeger et al. 2008). Acridine caused also 236 

reduction in offspring number produced per brood in semi-static exposure during 14 d, with the 237 

LOEC being less than half of respective acute EC50 (Blaylock et al. 1985).  238 

Considering EC50-single:EC50-mixture ratios, acridine values were near 1 and lower than for 239 

triclosan, indicating that its effects were prevalent in the mixture. EE2 effects are considered to be 240 

negligible, since its highest exposure concentration (0.1 mg/L) was 50 times lower than previous 241 

NOEC (Goto and Hiromi 2003). Although no information for 3-NBA was found in the literature, 242 

acute effects are not considered relevant due to low concentrations. 243 
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3.1.3 FET test 244 

The OECD FET test presented the lowest sensitivity to triclosan and the highest sensitivity to 245 

acridine among aquatic organism tests.  246 

Triclosan 96 h LC50-nom (1.3 to 1.9 mg/L, n.s.) and EC50-nom (Table S5) are circa three times 247 

higher than previous 96 h LC50-nom for zebrafish embryos exposed in 24-well plates (Oliveira et al. 248 

2009) or medaka in petri dishes under semi-static conditions (Ishibashi et al. 2004). This 249 

discrepancy could be related to differences in medium volumes and ratios surface area to volume 250 

of exposure vessels. However, triclosan concentrations decreased to circa half even in 1 L of water 251 

after 24 h adult medaka exposure (Ishibashi et al. 2004). Therefore other factors could play a role 252 

such as phototransformation, which can be minimized by incubation in dark. Among sublethal 253 

effects, reduced growth and delayed development were prevalent, similarly to effects in Xenopus 254 

laevis embryos (Harada et al. 2008). Triclosan was also related to delayed swim-up behaviour 255 

initiation and reduced survival in rainbow trout early-life stages (Orvos et al. 2002) and to 256 

disrupted swimming and predator avoidance in fathead minnow larvae (Cherednichenko et al. 257 

2012, Fritsch et al. 2013). We observed increased heartbeat rates at 96 h in zebrafish exposed to 258 

1.0 (47.0 beats / 20 s, p<0.01) and 1.3 mg/L (48.7 beats / 20 s, p<0001) compared to water and 259 

solvent controls, concentrations which caused none and circa 10% (p<001) cumulative effects, 260 

respectively. Since triclosan can impair the excitation-contraction coupling of cardiac and skeletal 261 

muscle (Cherednichenko et al. 2012, Fritsch et al. 2013), increased compensatory heartbeat rate 262 

could have occurred. Therefore the assessment of sublethal endpoints can support the 263 

identification of toxic effects other than lethality (Di Paolo et al. 2015a, Jonas et al. 2015). 264 

For acridine, FET 96 h LC50-nom (0.71 to 1.28 mg/L, n.s.) were circa three times lower than 265 

those from Daphnia and algae tests. Present values are slightly higher than previous measured 48 266 

h LC50 performed in 24-well plates (Peddinghaus et al. 2012). That can be related to possible 267 

acridine losses before and during experiments, since concentrations were shown to decrease to less 268 
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than half of nominal values (Peddinghaus et al. 2012). Performance of semi-static exposure with 269 

solution renewal could be a possible solution to maintain exposure concentrations (OECD 2013b). 270 

Considering the EC50-single:EC50-mixture, triclosan tended to present lower values when 271 

compared to acridine, indicating it was prevalent in the mixture toxicity. EE2 effects are 272 

considered to be negligible, since its highest exposure concentration (0.1 mg/L) was 50 times 273 

lower than previous NOEC (5 mg/L) (Goto and Hiromi 2003). For 3-NBA, although no 274 

information was found in the literature, acute effects are considered to be negligible. 275 

3.2 Estrogenicity assessment  276 

Although differences occurred between different estrogenicity assays and models, relative 277 

induction EC50 values were comparable to the literature, and obtained EEQ for the EE2-spike are 278 

in good agreement with previous values for ER-Luc and YES (Figure 3).  279 

3.2.1 ER-Luc assay 280 

Among all assays performed by the coordinator (Table S3), the non-spiked water extract was 281 

active only in the ER-Luc (ER-CALUX), with an EEQ of 0.17±0.01 ng/Lwater for the enrichment 282 

factor of 1. EE2-spike induction EC50 (0.53 and 0.39 ng/Lmedium, n.s.) were within the range of 283 

previously reported values for EE2 (Legler et al. 2002, Murk et al. 2002, Wilson et al. 2004, 284 

Bermudez et al. 2012, OECD 2012). Although EEQ values showed some variation (Fig.3C), 285 

which could be related to differences in assay protocol or model sensitivity (Jarošová et al. 2014), 286 

EEQ determination showed to be a reliable measurement for sample content.  287 

Considering the mixture-spikes, concentrations ≥0.5 µLextract/mLmedium caused cytotoxicity and 288 

were excluded from regression analysis. This effect is considered to be caused by triclosan 289 

concentrations (≥0.5 mg/Lmedium) in the cytotoxic range for human cells (Henry and Fair 2013); 290 

while no acridine cytotoxicity is indicated (Brinkmann et al. 2014). Tendency for higher EEQ 291 

values was observed for the mixture-spikes (Fig.3C). It could be discussed that such response is 292 

related to estrogen receptor binding by other chemicals in mixture, since acridine induction in 293 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

T47Dluc assay produced an estradiol equivalency factor (EEF) of 2.5.10-7 (Brinkmann et al. 294 

2014). However there is no evidence of triclosan agonism in estrogen-receptor reporter gene cell-295 

based assays (own results) (Ahn et al. 2008). More likely, non-specific effects on cellular 296 

membranes or metabolism (Ajao et al. 2015) could have interfered with induction.  297 

3.2.2 YES assay 298 

Our induction EC50 for the EE2-spike varied up to 2.5-fold (54.1 to 132.7 ng/L, p<0.01 to 299 

0.0001), in similar range to literature data (Table S4). The lowest EE2-spike EC50 was produced 300 

by the Routledge/Sumpter strain (1996), in agreement with previous studies (Van den Belt et al. 301 

2004, Balsiger et al. 2010), while the bioluminescent strain (Leskinen et al. 2005) produced the 302 

highest value. For the McDowell/ISO assay (ISO 2013), the EC50 of 99.5 ng/L was slightly higher 303 

than the EC50 obtained for the standard curve (80.4 ng/L), which also uses EE2 in this assay. EEQ 304 

values varied circa 2-fold (45.8 to 94.3 µg/mLextract), which can be related to the fact that different 305 

yeast strains and protocols can produce different EEF values (Svobodová et al. 2009, Jarošová et 306 

al. 2014). Therefore for the application of estrogenicity assays in water quality, effect-307 

concentrations for the standard chemical, main estrogens and investigated samples should be 308 

determined using the same model and protocol (Jarošová et al. 2014, Kunz et al. 2015).  309 

The highest mixture-spike test concentrations (≥0.1 µLextract/mLmedium) caused cytoxicity to the 310 

yeast cells and were excluded from regression analysis. This is attributed mostly to triclosan (≥0.1 311 

mg/Lmedium), since acridine concentrations are not expected to be toxic to the yeast cells 312 

(Brinkmann et al. 2014). No differences occurred between respective EEQ values for single and 313 

mixture spikes (Fig.3D). Previously, acridine was not identified as estrogenic by the lyticase YES 314 

assay (Brinkmann et al. 2014). Although triclosan was active in the Routledge/Sumpter strain, the 315 

compound was not identified as estrogenic in the bioluminescent YES (Svobodová et al. 2009).  316 

3.3 Mutagenicity assessment by the Ames fluctuation assay 317 
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Strong revertant induction occurred following 3-NBA-spike incubation with the TA98 strain 318 

in the absence of S9 fraction (-S9) (Fig.4A), which was of lower magnitude after metabolic 319 

transformation and for TA100 -S9 (Fig.4B-C). 3-NBA-spike revertant induction EC50 values were 320 

0.21 and 1.56 µg/L (p<0.01) for TA98-S9; and 5.73 µg/L for TA100-S9. Therefore the compound 321 

was clearly identified as mutagenic, although further improvement might be needed if precise 322 

effect-concentration values are required. Such results are in agreement with previous studies 323 

describing 3-NBA as a strong direct-acting mutagen in the TA98 strain, and the fact that it is less 324 

active in TA100 suggests that it causes frameshift-type mutations (Enya et al. 1997, IARC 2014). 325 

Further, there are indications that 3-NBA is also genotoxic in vitro and in in vivo (Watanabe et al. 326 

2005b). 3-NBA is a major mutagen in diesel particles, sediments, and surface soils (Enya et al. 327 

1997, Watanabe et al. 2005a, Lübcke-von Varel et al. 2012) and concentrations up to 2.6 ng/L 328 

were identified in rainwater (Murahashi et al. 2003).  329 

For the mixture-spike, test concentrations ≥0.5 µLextract/mLmedium caused toxic effects in –S9 330 

exposures (attributed to triclosan 50 ng/mL medium), which were excluded from regression 331 

analysis (Fig. 4B, Fig. S7). Cytotoxic effects were reduced by the S9 mix incubation (Fig. S7), 332 

suggesting that resulting triclosan metabolites present less toxic effects than the parent compound. 333 

Our results showed that neither triclosan nor acridine caused increase in the number of revertants 334 

(Table S4), in agreement with previous studies investigating their mutagenicity through the Ames 335 

plate incorporation method (Eisentraeger et al. 2008, SCCP 2009).  336 

3.4 Bioassay battery strategy 337 

Bioassay battery assessment of water quality is based on the consideration that one single 338 

bioassay does not provide an overview on potential effects on different organisms and toxicity 339 

mechanisms. Since sensitivity to different toxicants varies between organisms, multi-taxa 340 

assessment supports the comprehension of toxicant effects on aquatic communities (Guillen et al. 341 

2012). The organism-level assays proposed in the present study investigate population-level 342 
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effects in freshwater algae as primary producers, acute toxicity to the filter-feeder invertebrate 343 

Daphnia, and acute toxicity to fish individuals. Multi-taxa toxicity assessment is applied for EQS 344 

derivation within the WFD, which requires evaluation of acute and chronic data for (i) 345 

alga/macrophyte, (ii) Daphnia/another invertebrate, and (iii) fish (EC 2011). Similar strategy is 346 

applied in REACH to evaluate aquatic pelagic toxicity (ECHA 2014). The suitability of the algae, 347 

Daphnia and FET assays to compose a basic (eco)toxicity test battery was evaluated for hazard 348 

waste, wastewater effluent, freshwater and drinking water assessment (Keddy et al. 1995, Diaz-349 

Baez et al. 2002, Manusadžianas et al. 2003, Pandard et al. 2006, Gartiser et al. 2009, Römbke and 350 

Moser 2009); and for effect-directed analysis (Brack et al. 2013, Di Paolo et al. 2015b, Brack et al. 351 

2016). Therefore the assays are expected to be already established in diverse laboratories 352 

worldwide. Finally, the followed miniaturized assay performance has already been investigated in 353 

comparison with higher-volume methods and with adult fish for the FET (Eisentraeger et al. 2003, 354 

Knobel et al. 2012, Baumann et al. 2014). 355 

Complementary, mechanism-specific bioassays can provide information on modes-of-action 356 

that are intrinsically of concern for ecosystems and health. For example, the photosynthesis 357 

inhibition endpoint of the performed combined algae test covers many current WFD priority 358 

compounds and emerging compounds. Furthermore, endocrine disruption and mutagenicity are of 359 

particular relevance for population-level effects and humans (EC 2000, 2011, ECHA 2014). For 360 

estrogens, regulatory strategies involving bioassays are reinforced after the recent inclusion of 361 

estrogenic pharmaceuticals in the WFD watch list (Hecker and Hollert 2011, EC 2013). In fact, 362 

both ER-Luc and YES assays have been recommended for estrogen monitoring in water bodies 363 

(Loos 2012). Regarding mutagenicity, the Ames fluctuation assay round-robin study was the first 364 

step towards its regulatory implementation in water legislation (Wolz et al. 2010, Reifferscheid et 365 

al. 2012). Moreover, the Ames and umu tests are recommended as mutagenicity and genotoxicity 366 

methods for the waste ecotoxicological characterization (Römbke and Moser 2009). Due to their 367 
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environmental and health relevance, estrogenicity and mutagenicity assays are also established in 368 

many laboratories.  369 

The present results complement previous validation studies of the organism-level and 370 

mechanism-specific methods by demonstrating the good performance of methods not only with 371 

single chemicals but also to evaluate water extracts spiked with emerging contaminants. Our 372 

approach can provide useful information to link chemical testing and field studies with those 373 

assays. A relevant aspect to consider is that the assays can be applied to evaluate not only water 374 

extracts but raw water samples and effluents. In this sense the proposed bioassay battery presents a 375 

flexible setup for diverse applications in the context of water quality monitoring. 376 

3.5 Stepping-stones towards the establishment of bioassays in water quality monitoring 377 

Currently there are diverse European initiatives towards bioassay application in water quality 378 

assessment, such as the Technical Report on effect-based tools in the context of the WFD 379 

(Wernersson et al. 2015) and activities towards the validation of low volume, high-throughput 380 

bioassay batteries (Brack et al. 2013, Altenburger et al. 2015, Brack et al. 2015, Neale et al. 2015, 381 

Schulze et al. 2015). Such applied studies will be of high relevance for the decision on a basic 382 

battery for water monitoring. Similarly to our approach, these initiatives tend to focus on assays 383 

that allow relatively fast performance. Consequently, only acute toxicity is evaluated in fish and 384 

daphnids, while mechanism-specific methods are investigated in the in vitro level. However, after 385 

the setup of such basic battery, its composition can certainly be expanded according to regional 386 

requirements or specific investigation. For instance, when chronic fish toxicity is suspected, the 387 

decision on whether to perform chronic tests can be supported by toxicity assays with fish early-388 

life stages (OECD 2013a, Villeneuve et al. 2014, Di Paolo et al. 2015a). In cases when freshwater 389 

sediments present a concern, whole-sediment toxicity assays with different organisms are 390 

available. Ring tests have demonstrated the good performance of tests evaluating macrophyte 391 

growth impairment (Feiler et al. 2014); and growth and reproduction effects on interstitial water 392 
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nematodes (Hoss et al. 2012). Recent studies include also a methodological investigation of a 393 

freshwater ostracod sub-chronic test (Casado-Martinez et al. 2016); and a tiered strategy for 394 

sediment risk assessment integrating different toxicity tests (Diepens et al. 2016).  395 

Importantly, the investigation of additional mechanism-specific toxicities can rely on diverse 396 

reporter-gene assays, for which effect-based trigger values to support decisions on water quality 397 

assessment are being established (Loos 2012, Brand et al. 2013, Escher et al. 2015). In parallel to 398 

these tests, it is necessary to investigate the occurrence of non-specific toxicity caused by sample 399 

components, which can interfere with the performance of assays and even mask mechanism-400 

specific effects (Brack et al. 2016). That was demonstrated in our study for the ubiquitous 401 

contaminant triclosan, which was cytotoxic to human cells, yeast and bacteria at concentrations 402 

representative of water samples or extracts (von der Ohe et al. 2012). Finally, further studies can 403 

investigate remaining aspects of relevance for bioassays screening of water sample and extracts. 404 

For instance, different conditions of sample storage can partially affect chemical composition, 405 

including of endocrine disruptors (Aboulfadl et al. 2010). In the future, the influence of sample 406 

shipping and storage conditions should be evaluated not only through chemical analysis but also 407 

regarding effects on bioassay performance and results. 408 

 409 

4. Conclusions and outcomes 410 

The battery of miniaturized bioassays presented complementary sensitivity and specificity to 411 

the water extract spikes containing four emerging pollutants as single-chemicals or mixtures. 412 

Aquatic organism sensitivity varied following exposure to different chemicals, confirming the 413 

complementary role of the tests with the three taxa for water quality assessment. Estrogenicity and 414 

mutagenicity assays identified with high precision the respective mechanism-specific effects of 415 

spikes, even though non-specific toxicity of mixture compounds affected the evaluation of higher 416 

test concentrations. Since differences in experimental protocols, model organisms, and data 417 
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analysis can affect the determination of effect-concentrations, respective standard methods and 418 

harmonized procedures should be followed when implementing bioassays in water monitoring. 419 

Together with other ongoing activities for the validation of a basic battery of bioassays, the 420 

present study is an important step towards the implementation of bioanalytical monitoring tools in 421 

water quality assessment and monitoring. 422 
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Table 1: Chemical properties of the compounds used for water extract spiking.  436 

Chemical 
CAS 

number 
Formula Supplier Purity Structure 

Molecular 

weight 

(g mol-1) 

logKow  
Solubility in 

water (mgL-1) 

Triclosan  3380-34-5 C12H7Cl3O2 
Sigma-Aldrich 

(Germany) 

≥97% 

 

289.6 4.76 a 
10 

(20°C) a 

Acridine  260-94-6 C13H9N Merck (Germany) 
>98% 

 
179.2 3.40 a 

38.4 mg/L 

(24°C) a 

3-Nitrobenzanthrone  

(3-NBA) 
17117-34-9 C17H9NO3 Chiron AS (Norway) 

>98% 

 

275.3 4.5 b 0.025 b 

17α-Ethinylestradiol 

(EE2) 
57-63-6 C20H24O2 

Sigma-Aldrich 

(Germany) 

≥98% 

 

296.4 3.67 a 
11.3 

(27°C) a 

a: National Center for Biotechnology Information. PubChem Compound Database (September 2015) 437 

b: Predicted data, US Environmental Protection Agency’s EPISuite™, KOWWIN v1.67 estimate. 438 

 439 

  440 
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Table 2: Bioassays performed in the ILS, with indication of respective method title, endpoints, model organisms, exposure duration and protocol. 441 

Bioassay Method title Endpoints / expressed results 
Model 
organism 

Exposure 
duration 
(h) 

Exposure 
vessels 

Medium per 
vessel or 
well (mL) 

Protocols followed by laboratories 
(identified by codes) a 

Algae 
test  

Freshwater algal 
growth inhibition 
test  

Growth inhibition / Growth inhibition normalized 
to solvent control 

Pseudokirchneri
ella subcapitata  

72 96-well plates 0.2 

10, 9, 11: OECD Test No. 201 
(OECD 2011) or ISO 8692:2012 
(ISO 2012b) modified to 96-well 
plate 

Combined algae 
assay 

Inhibition of microalgae growth and 
photosynthesis / Growth and photosynthesis 
inhibition normalized to solvent control 

P. subcapitata 24 96-well plates 0.3 
 2, 3: Combined algae assay (Escher 
et al. 2008) 

Daphnia 
test 

Daphnia sp. acute 
immobilisation test 

Immobilization of daphnids / Immobilization 
occurrence 

D. magna 48 
96-well plates, 
glass tubes, 
glass beakers 

0.2 
10 
20 

5, 6, 7, 10 and 11: OECD Test No. 
202 (OECD 2004) or ISO 6341:2012 
(ISO 2012a) 

FET test 
Fish embryo acute 
toxicity test 

Fish embryo lethality and occurrence of 
morphological sublethal endpoints / Occurrence 
of survival and cumulative occurrence of lethal 
and sublethal morphological endpoints 

Danio rerio 96 96-well plates 0.2 

4, 9 and 10: OECD Test No. 236 
(OECD 2013b) with observation of 
sublethal morphological endpoints 
modified to 96-well plate  

YES 
assay 

Yeast estrogen 
screening assay 

Estrogen receptor binding activity / Induction 
values converted to % of standard maximum 
response (after subtracting the solvent response 
from both sample and standard) 

Recombinant 
yeast cells 

18-72 96-well plates 0.2 

1: β-galactosidase recombinant yeast 
following ISO/TC 147/SC 5 N 804 
(ISO 2013); 6: β-galactosidase 
recombinant yeast  
(Routledge and Sumpter 1996)  

2.5 96-well plates 0.2 
9: Luciferase recombinant yeast  
(Leskinen et al. 2003, Leskinen et al. 
2005)  

ER-Luc 
assay 
  

Estrogen receptor 
luciferase reporter-
gene assays with 
permanent cell lines 

Estrogen receptor binding activity / Induction 
values converted to % of standard maximum 
response (after subtracting the solvent response 
from both sample and standard) 

Luciferase 
reporter gene 
permanent 
human cell lines  
 

19-24 96-well plates 0.2 

5: T47D-kbLuc breast cancer cells 
(Wilson et al. 2004) 8: BG1Luc4E2 
ovarian cancer cells (Rogers and 
Denison 2000, OECD 2012); 10: 
osteosarcoma cells (Maletz et al. 
2013, Besselink 2015) 

Ames 
assay 

Ames fluctuation 
assay 

 Induction of reverse mutations / Revertant 
numbers converted to % of positive control 
maximum response (after subtracting solvent 
revertants from both sample and positive control) 

Salmonella 
strains TA100 
and TA98  

48 h 
24- / 384well 
plates 

0.5 (+2.5) / 
0.05  

1, 8, 10: ISO 11350 (ISO 2012c) or 
3: (Reifferscheid et al. 2012, Escher 
et al. 2014) 

a: Laboratory code numbers are described in Table S1.   442 
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 443 

Table 3: Composition of the spiked water samples for each bioassay, consisting of one or two 444 
single-chemical spiking and a chemical mixture for each bioassay 445 

Bioassay Sample  

Composition of spiking of 10,000 times 

concentrated water extract 
Exposure setup 

Triclosan  

(mg/mL 

extract) 

Acridine  

(mg/mL 

extract) 

EE2 

(µg/mL 

extract) 

3-NBA 

(µg/mL 

extract) 

Maximal test 

concentration 

(mL extract / 

L medium) 

Serial dilution 

steps 

Number of 

tested 

dilutions 

Algae test 

Triclosan 0.1 - - - 
1-3 a  

50-33 b 

1 : 2  

(2-fold) 

5-7 a 

16 b 
Acridine - 10 - - 

Mixture 0.1 10 100 - 

Daphnia test 

Triclosan 1 - - - 

1 
1 : 2  

(2-fold) 
4-5 Acridine - 15 - - 

Mixture 1 15 100 2 

FET test 

Triclosan 3 - - - 0.77 
1: 1.3  

(1.3-fold) 
5 Acridine - 2 - - 1 

Mixture 3 2 100 2 0.58 

YES assay 
EE2 - - 100 - 

0.1-2 
3 : 10 and 1 : 3 

(3.3 and 3-fold) 
9-16 

Mixture 1 2 100 - 

ER-luc assay 
EE2 - - 1 - 

0.5-1 
1 : 10 

(10-fold) 
7 

Mixture 1 2 1 - 

Ames assay 
3-NBA - - - 2 

1 
1 : 2  

(2-fold) 
6 

Mixture 0.1 2 100 2 

a: Freshwater algal growth inhibition test with unicellular green algae 446 

b: Combined algae assay 447 

  448 
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 449 

 450 

Figure 1: Effect-concentration values (log EC50 and 95% C.I., mg/L) obtained for pooled data from one to 451 

three experiments for each assay for the triclosan (left) and acridine (right) spikes in the algae (72 h or 24 h 452 

growth inhibition), Daphnia (48 h immobilization) and FET (96 h cumulative effects) tests. Y-axes 453 

correspond to laboratory codes (Table S1).  454 

 455 

 456 

 457 
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  458 

Figure 2: Ratios between EC50 values (µL/mL) for the single-chemical and mixture spikes containing a 459 

fixed ratio of respective single compounds (EC50-single : EC50-mixture) for the triclosan (white bars) and 460 

acridine (grey bars) spikes in the algae, Daphnia and FET (cumulative effects and lethality) tests. Error 461 

bars correspond to the ratios between 95% C.I. for single chemicals and the EC50-mixture value. 462 

 463 

 464 

  465 
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 466 

Figure 3: EC50 (ng/L) values for EE2 in the ER-Luc (A) and YES (B) assays, and EEQ values 467 

obtained for the EE2 and the mixture spikes in the ER-Luc (C) and the YES (D) assays.  EC50 468 

values (symbols) and 95% C.I. (error bars) for respective sample. Results are presented according 469 

to laboratory code numbers (Table S1). Biological models are: T47D-kbLuc (5) BG1Luc4E2 (8), 470 

β-galactosidase recombinant yeast by McDonnell et al. 1991 (1), β-galactosidase recombinant 471 

yeast by Routledge and Sumpter 1996 (6), and luciferase recombinant yeast by Leskinen et al. 472 

2003 (9). 473 

 474 
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 475 

 Figure 4: Revertant induction versus 3-NBA concentrations (µg/L) contained in (A) 3-NBA-476 

spike in TA98-S9, (B) mixture-spike in TA98-S9, and (C) 3-NBA-spike in TA100-S9; plus 477 

respective positive control (PC) conditions. Average values (bars) and standard deviations (error 478 

bars) for two to three experiments. Results are presented using laboratory code numbers (Table 479 

S1).   480 

  481 
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Bioassay battery interlaboratory investigation of emerging contaminants in 

spiked water extracts – towards the implementation of bioanalytical 

monitoring tools in water quality assessment and monitoring  

 

Highlights 

• Bioassay suitability to evaluate emerging aquatic pollutants is a research need 
• 11 laboratories evaluated blinded spiked water extracts with a bioassay battery 
• Spiked extracts contained 4 emerging pollutants as single chemicals or mixtures 
• Tests presented complementary organism-sensitivity and mechanism-specificity 
• Standard harmonized procedures are needed for regulatory water quality monitoring 


