1,148 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Observation of the B⁰_s → X(3872)ϕ Decay

    Get PDF
    Using a data sample of proton-proton collisions at √s = 13  TeV, corresponding to an integrated luminosity of 140  fb⁻¹ collected by the CMS experiment in 2016–2018, the B⁰_s → X(3872)ϕ decay is observed. Decays into J/ψπ⁺π⁻ and K⁺K⁻ are used to reconstruct, respectively, the X(3872) and ϕ. The ratio of the product of branching fractions B[B⁰_s → X(3872)ϕ]B[X(3872) → J/ψπ⁺π−] to the product B[B⁰_s → ψ(2S)ϕ]B[ψ(2S) → J/ψπ⁺π−] is measured to be [2.21±0.29(stat)±0.17(syst)]%. The ratio B[B⁰_s → X(3872)ϕ]/B[B⁰ → X(3872)K⁰] is found to be consistent with one, while the ratio B[B⁰_s → X(3872)ϕ]/B[B⁺ → X(3872)K⁺] is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B⁰ and B⁰_s meson decays compared to B⁺. The reported observation may shed new light on the nature of the X(3872) particle

    Search for decays of the 125 GeV Higgs boson into a Z boson and a ρ or ϕ meson

    Get PDF
    Decays of the 125 GeV Higgs boson into a Z boson and a ρ^0(770) or ϕ(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at √s = 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb⁻¹. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the ρ and ϕ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and ρ or ϕ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Zρ and Zϕ are determined to be 1.04–1.31% and 0.31–0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740–940 and 730–950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels

    Search for the lepton flavor violating decay τ → 3μ in proton-proton collisions at s \sqrt{\mathrm{s}} = 13 TeV

    Get PDF
    Results are reported from a search for the lepton flavor violating decay τ → 3μ in proton-proton collisions at s \sqrt{\mathrm{s}} = 13 TeV. The data sample corresponds to an integrated luminosity of 33.2 fb1^{-1} recorded by the CMS experiment at the LHC in 2016. The search exploits τ leptons produced in both W boson and heavy-flavor hadron decays. No significant excess above the expected background is observed. An upper limit on the branching fraction B(τ → 3μ) of 8.0 x 108^{-8} at 90% confidence level is obtained, with an expected upper limit of 6.9 x 108^{-8}

    Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at sNN\sqrt{sNN} =5.02 TeV

    Get PDF
    The first measurement of the dependence of γγ→μ+^{+} μ^{-} production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at sNN\sqrt{^{s}NN}=5.02 TeV, with an integrated luminosity of approximately 1.5nb1^{-1}, are collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region 88.3. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions

    Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at <mml:msqrt>s</mml:msqrt>=13 TeV

    Get PDF
    Peer reviewe

    Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at sNN\sqrt{^{s}NN} =5.02 TeV

    Get PDF
    The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sNN\sqrt{^{s}NN}=5.02 TeV per nucleon pair, using the decay chain X(3872)→J/ψπ+^{+} π^{–}→μ+^{+}μ^{–}π+^{+} π^{–}. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb1^{-1}. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15<pT<50 GeV/c. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to ψ2S yield ratio is found to be ρPbPb^{Pb-Pb}=1.08±0.49(stat)±0.52(syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state
    corecore