9,434 research outputs found

    Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals

    Get PDF
    We report on the thermally activated flux flow dependency on the doping dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found clearly that irrespective of the doping ratio, magnetoresistivity showed a distinct tail just above the Tc, offset associated with the thermally activated flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature dependence of the activation energy follows the relation U(T, B)=U_0 (B) (1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the exponent {\alpha} is changed from a low value to a high value at a crossover field of B=~2T, indicating the transition from collective to plastic pinning in the crystals. Finally, it is suggested that the 3D vortex phase is the dominant phase in the low-temperature region as compared to the TAFF region in our series samples

    Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium

    Full text link
    The laser cooling and trapping of ultracold neutral dysprosium has been recently demonstrated using the broad, open 421-nm cycling transition. Narrow-line magneto-optical trapping of Dy on longer wavelength transitions would enable the preparation of ultracold Dy samples suitable for loading optical dipole traps and subsequent evaporative cooling. We have identified the closed 741-nm cycling transition as a candidate for the narrow-line cooling of Dy. We present experimental data on the isotope shifts, the hyperfine constants A and B, and the decay rate of the 741-nm transition. In addition, we report a measurement of the 421-nm transition's linewidth, which agrees with previous measurements. We summarize the laser cooling characteristics of these transitions as well as other narrow cycling transitions that may prove useful for cooling Dy.Comment: 6+ pages, 5 figures, 5 table

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions Ï”\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges Ï”b\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the Ï”1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain Ï”1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract Ï”1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental Ï”1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High Ï”1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart.

    Get PDF
    In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images

    Non-Gaussian errors of baryonic acoustic oscillations

    Full text link
    We revisit the uncertainty in baryon acoustic oscillation (BAO) forecasts and data analyses. In particular, we study how much the uncertainties on both the measured mean dilation scale and the associated error bar are affected by the non-Gaussianity of the non-linear density field. We examine two possible impacts of non-Gaussian analysis: (1) we derive the distance estimators from Gaussian theory, but use 1000 N-Body simulations to measure the actual errors, and compare this to the Gaussian prediction, and (2) we compute new optimal estimators, which requires the inverse of the non-Gaussian covariance matrix of the matter power spectrum. Obtaining an accurate and precise inversion is challenging, and we opted for a noise reduction technique applied on the covariance matrices. By measuring the bootstrap error on the inverted matrix, this work quantifies for the first time the significance of the non-Gaussian error corrections on the BAO dilation scale. We find that the variance (error squared) on distance measurements can deviate by up to 12% between both estimators, an effect that requires a large number of simulations to be resolved. We next apply a reconstruction algorithm to recover some of the BAO signal that had been smeared by non-linear evolution, and we rerun the analysis. We find that after reconstruction, the rms error on the distance measurement improves by a factor of ~1.7 at low redshift (consistent with previous results), and the variance ({\sigma}^2) shows a change of up to 18% between optimal and sub-optimal cases (note, however, that these discrepancies may depend in detail on the procedure used to isolate the BAO signal). We finally discuss the impact of this work on current data analyses.Comment: 13 pages, 11 figures, MNRAS accepte

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    Charge ordering in quarter-filled ladder systems coupled to the lattice

    Full text link
    We investigate charge ordering in the presence of electron-phonon coupling for quarter-filled ladder systems by using Exact Diagonalization. As an example we consider NaV2O5 using model parameters obtained from first-principles band-structure calculations. The relevant Holstein coupling to the lattice considerably reduces the critical value of the nearest-neighbor Coulomb repulsion at which formation of the zig-zag charge-ordered state occurs, which is then accompanied by a static lattice distortion. Energy and length of a kink-like excitation on the background of the distorted lattice are calculated. Spin and charge spectra on ladders with and without static distortion are obtained, and the charge gap and the effective spin-spin exchange parameter J are extracted. J agrees well with experimental results. Analysis of the dynamical Holstein model, restricted to a small number of phonons, shows that low frequency lattice vibrations increase the charge order, accompanied by dynamically produced zig-zag lattice distortions.Comment: 11 pages, 17 figures, revised version as to appear in Phys. Rev.

    Charge Fluctuations in Geometrically Frustrated Charge Ordering System

    Full text link
    Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and (b) two-dimensional square lattice with V_1 along the squares and V_2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case (a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even when the interaction strenghs are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical correlation functions. Comparison of such features between the two models are discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.Comment: 8 pages, 9 figure
    • 

    corecore