36 research outputs found

    Recent advances in the aqueous chemistry of the calcium(II)-gluconate system – Equilibria, structure and composition of the complexes forming in neutral and in alkaline solutions

    Get PDF
    Of the sugar carboxylates, D-gluconate is clearly the most significant representative: the world’s annual production of this organic compound is estimated to be in the order of 105^{5} tonnes. The reason of its mass production is due to its outstandingly broad range of practical (medical, pharmaceutical, industrial, etc.) applications. D-gluconate is a well-known and exceptionally popular complexing agent; accordingly, it has been the subject of a large number of coordination chemical research investigations. Its complexation properties are specially remarkable in alkaline to hyperalkaline pH conditions, where the deprotonation of one or more of its alcoholic OH groups provides a favourable frame for the formation of very stable chelate complexes with a large variety of metal cations. With the aim to show the state of the art of some relevant issues in the aqueous chemistry of the D-gluconate ion, the current paper focusses on the acidbase properties and calcium(II) complexation of the compound encompassing the entire experimentally available pH-range in water. The accessible literature on the deprotonation of carboxylic and alcoholic OH groups is collected and critically evaluated. The lactonization equilibria of D-gluconic acid are also scrutinized. The available data on the calcium complexes forming in neutral and in (hyper)alkaline solutions (both in terms of composition, formation constants and solution structure) are also discussed. Where feasible, some of these properties are compared with those of D-glucose and its derivatives as well as some less common sugar carboxylates, structurally related to D-gluconate, (i.e., D-heptagluconate, Lgulonate and α-D-isosaccharinate). Special emphasis is laid on the relationship between complex stability and the type of metal-binding groups

    The Structure of Hyperalkaline Aqueous Solutions Containing High Concentrations of Gallium - a Solution X-ray Diffraction and Computational Study

    Get PDF
    Highly concentrated alkaline NaOH/Ga(OH)3 solutions with 1.18 M Ga(III)T 2.32 M and 2.4 M NaOHT 4.9 M (where the subscript T denotes total or analytical concentrations) have been prepared and investigated by solution X-ray diffraction and also by ab initio quantum chemical calculations. The data obtained are consistent with the presence of only one predominant Ga(III)-bearing species in these solutions, that is the tetrahedral hydroxo complex Ga(OH)4–. This finding is in stark contrast to that found for Al(III)-containing solutions of similar concentrations, in which, besides the monomeric complex, an oxo-bridged dimer was also found to form. From the solution X-ray diffraction measurements, the formation of the dimeric (OH)3Ga–O–Ga(OH)32– could not unambiguously be shown, however, from the comparison of experimental IR, Raman and 71Ga NMR spectra with calculated ones, its formation can be safely excluded. Moreover, higher mononuclear stepwise hydroxo complexes, like Ga(OH)63–, that have been claimed to exist by others in the literature, was not possible to experimentally detect in these solutions with any of the spectroscopic techniques used

    Mössbauer, XRD and TEM Study on the Intercalation and the Release of Drugs in/from Layered Double Hydroxides

    Get PDF
    Layered double hydroxides (LDHs) are one of the very important nano-carriers for drug delivery, due to their many advantageous features, such as the ease and low-cost of preparation, low cytotoxicity, good biocompatibility, protection for the intercalated drugs, and the capacity to facilitate the uptake of the loaded drug in the cells. In our previous studies, Mössbauer spectroscopy was applied to monitor structural changes occurring during the incorporation of Fe(III) in MgFe- and CaFe-LDHs, and the intercalation of various organic compounds in anionic form. Recently, we have successfully elaborated a protocol for the intercalation and release of indol-2-carboxylate and L-cysteinate in CaFe-LDH. The corresponding structural changes in the LDH samples were studied by XRD, HR-TEM and 57Fe Mössbauer spectroscopy. The Mössbauer spectra reflected small but significant changes upon both the intercalation and the release of drugs. The changes in the basal distances could be followed by XRD measurements, and HR-TEM images made these changes visible

    Dehydration-rehydration behaviour of layered double hydroxides: a study by X-ray diffractometry and MAS NMR spectroscopy

    No full text
    Mg-Al and Zn-Al double hydroxides were synthesized and their dehydration-rehydration behaviour was studied by X-ray diffractometry and Al-27 magic-angle spinning (MAS) NMR spectroscopy. On dehydration the layered structure collapsed, but treatment in water resulted in partial reconstitution of the original structure, Or. heat treatment part of the octahedrally coordinated aluminium, typical of layered double hydroxides, became tetrahedrally coordinated, On rehydration some of the tetrahedral aluminium became octahedrally coordinated again
    corecore