6,192 research outputs found

    Neutron matter from chiral effective field theory interactions

    Full text link
    The neutron-matter equation of state constrains the properties of many physical systems over a wide density range and can be studied systematically using chiral effective field theory (EFT). In chiral EFT, all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present details and additional results of the first complete N3LO calculation of the neutron-matter energy, which includes the subleading three-nucleon as well as the leading four-nucleon forces, and provides theoretical uncertainties. In addition, we discuss the impact of our results for astrophysics: for the supernova equation of state, the symmetry energy and its density derivative, and for the structure of neutron stars. Finally, we give a first estimate for the size of the N3LO many-body contributions to the energy of symmetric nuclear matter, which shows that their inclusion will be important in nuclear structure calculations.Comment: published version; 21 pages, 11 figures, 5 table

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    The chiral condensate in neutron matter

    Get PDF
    We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading order (N3LO) of the chiral expansion. We find that the interaction contributions lead to a modest increase of the condensate, thus impeding the restoration of chiral symmetry in dense matter and making a chiral phase transition in neutron-rich matter unlikely for densities that are not significantly higher than nuclear saturation density.Comment: published version, 6 pages, 4 figure

    Stratospheric Dynamics

    Get PDF

    Pacifying the Fermi-liquid: battling the devious fermion signs

    Full text link
    The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self consistently translated into a geometrical constraint structure (the {\em nodal hypersurface}) acting on an effective bosonic dynamics. As an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmetry.Comment: 28 pages, 5 figure

    Weakly interacting Bose gas in the one-dimensional limit

    Full text link
    We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperature. We reach temperatures down to kT0.5ωkT\approx 0.5\hbar\omega_\perp (transverse oscillator eigenfrequency ω\omega_\perp) when collisional thermalization slows down as expected in 1d. At the lowest temperatures the transverse momentum distribution exhibits a residual dependence on the line density n1dn_{1d}, characteristic for 1d systems. For very low densities the approach to the transverse single particle ground state is linear in n1dn_{1d}.Comment: to appear in Phys. Rev. Let

    Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors

    Get PDF
    We develop an understanding of the anomalous metal state of the parent compounds of recently discovered iron based superconductors starting from a strong coupling viewpoint, including orbital degrees of freedom. On the basis of an intermediate-spin (S=1) state for the Fe^{2+} ions, we derive a Kugel-Khomskii spin-orbital Hamiltonian for the active t_{2g} orbitals. It turns out to be a highly complex model with frustrated spin and orbital interactions. We compute its classical phase diagrams and provide an understanding for the stability of the various phases by investigating its spin-only and orbital-only limits. The experimentally observed spin-stripe state is found to be stable over a wide regime of physical parameters and can be accompanied by three different types of orbital orders. Of these the orbital-ferro and orbital-stripe orders are particularly interesting since they break the in-plane lattice symmetry -- a robust feature of the undoped compounds. We compute the magnetic excitation spectra for the effective spin Hamiltonian, observing a strong reduction of the ordered moment, and point out that the proposed orbital ordering pattern can be measured in resonant X-ray diffraction.Comment: 16 pages, 12 figure

    Adiabatic radio frequency potentials for the coherent manipulation of matter waves

    Full text link
    Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one to implement numerous novel configurations, including double wells, Mach-Zehnder and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips.Comment: 13 pages, 2 figure

    The colonial ascidian Diplosoma listerianum enhances the occurrence of the hydrozoan Obelia sp. during early phases of succession

    Get PDF
    Recruitment patterns of sessile species often do not reflect the composition of the local propagule pool. This is, among other processes, attributed to the stimulation or inhibition of settlement by resident species. In an experimental study, we evaluated the effects of different densities of the ascidian Diplosoma listerianum on the settlement of the hydrozoan Obelia sp. For this, we monitored the cover of the dominant fouler Obelia sp. on vertically orientated PVC tiles, which were either bare or pre-seeded with two different densities (sparse or dense) of Diplosoma colonies, over the course of 8 weeks. The settlement tiles were deployed at two study sites in La Herradura Bay, Chile. The presence of D. listerianum enhanced the settlement or the growth or both of the colonial hydrozoan, but this effect disappeared within 4–8 weeks. Furthermore, we tested whether the initial enhancement of Obelia sp. by Diplosoma colonies goes back to the fact that larvae, which reject the ascidian tunic as a settlement substratum after a first contact, colonize nearby surfaces because of their limited mobility. However, we found no support for this assumption. We rather suggest that D. listerianum facilitated colonization indirectly by the accumulation of organic material in its vicinity and/or by its pumping activity. Initial resident-mediated enhancement of the hydrozoan was overridden by processes such as competition between later colonizers within the course of weeks and we could not detect any lasting effects of D. listerianum on the structure of the developing communities
    corecore