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The colonial ascidian Diplosoma 
listerianum enhances the occurrence of the 
hydrozoan Obelia sp. during early phases 
of succession
I. Krüger1,5,6, M. Lenz2*  and M. Thiel3,4,5,6

Abstract 

Recruitment patterns of sessile species often do not reflect the composition of the local propagule pool. This is, 
among other processes, attributed to the stimulation or inhibition of settlement by resident species. In an experimen-
tal study, we evaluated the effects of different densities of the ascidian Diplosoma listerianum on the settlement of 
the hydrozoan Obelia sp. For this, we monitored the cover of the dominant fouler Obelia sp. on vertically orientated 
PVC tiles, which were either bare or pre-seeded with two different densities (sparse or dense) of Diplosoma colonies, 
over the course of 8 weeks. The settlement tiles were deployed at two study sites in La Herradura Bay, Chile. The 
presence of D. listerianum enhanced the settlement or the growth or both of the colonial hydrozoan, but this effect 
disappeared within 4–8 weeks. Furthermore, we tested whether the initial enhancement of Obelia sp. by Diplosoma 
colonies goes back to the fact that larvae, which reject the ascidian tunic as a settlement substratum after a first 
contact, colonize nearby surfaces because of their limited mobility. However, we found no support for this assump-
tion. We rather suggest that D. listerianum facilitated colonization indirectly by the accumulation of organic material 
in its vicinity and/or by its pumping activity. Initial resident-mediated enhancement of the hydrozoan was overridden 
by processes such as competition between later colonizers within the course of weeks and we could not detect any 
lasting effects of D. listerianum on the structure of the developing communities.
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Introduction
To understand the processes controlling substratum col-
onization by marine sessile invertebrates and macroalgae, 
it is important to distinguish between settlement and 
recruitment. While settlement exclusively refers to the 
moment of adhesion, recruitment also includes the suc-
cessful survival and growth of a settler over longer time 
scales [e.g. 1, 2]. Both, settlement and post-settlement 
survival are strongly influenced by the presence and 
abundance of resident species [3, 4]. Several macroin-
vertebrates suppress recruitment by preying on larvae of 

other settlers [5], while epizoans as well as macroalgae 
can preempt settlement substrata, facilitate or inhibit 
larval settlement [5–7], and reduce the availability of 
resources such as light, food, and gases [8].

Because of their tolerance towards abiotic stresses and 
disturbances, colonial ascidians are ubiquitous in marine 
fouling communities worldwide [9]. Furthermore, they 
are notorious for being highly successful invaders that 
can dominate available substrata to large extents. An 
area of 230 km2 at Georges Bank, USA, was (in a depth 
range of 45–60 m) observed to be covered by the invasive 
Didemnum sp. by up to 90% [10]. In many benthic habi-
tats worldwide settlers can encounter colonial ascidians 
during the colonization process, and a few experimental 
and observational studies so far confirmed that these can 
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influence the settlement and recruitment of other organ-
isms or the succession of communities [11–14].

Colonial ascidians of the genus Diplosoma (MacDon-
ald 1859) are typical macrofoulers on man-made sub-
strata in temperate regions and they are among the most 
widespread cosmopolitan marine species [15]. Especially 
during the early succession of fouling communities on 
previously bare substrata, when open space is plenty, the 
fast-growing Diplosoma colonies can reach high abun-
dances and overgrow other recruits [11]. Like many colo-
nial ascidians, Diplosoma can keep its surface clear of 
fouling [16] and thereby efficiently preempt settlement 
substratum. Their defensive mechanisms have not been 
identified in all details, but several chemical and mechan-
ical traits have been suggested [15]. A further possible 
explanation for the resistance of Diplosoma to fouling 
may be the acidity of its tunic [17–20]. Although we have 
some knowledge about how Diplosoma wards off foulers 
and consumers, it is still unclear if and in which way it 
affects settlement in its direct vicinity. Previous experi-
ments designed to answer this question showed contrast-
ing results. On the one hand, Diplosoma was observed 
to reduce the settlement of the polychaete Spirorbis sp. 
(Daudin 1800) and of other colonial ascidians, e.g. Bot-
ryllus schlosseri (Pallas 1766) and Botrylloides sp. (Milne-
Edwards 1841), on adjacent surfaces [21], while, on the 
other hand, the settlement of larvae was found to be 
enhanced in the direct vicinity of Diplosoma [11]. The 
latter was attributed to a “switching behaviour” of incom-
ing larvae, which, due to being limited in their mobility, 
settle on adjacent surfaces after having first contacted 
and rejected the tunic of the ascidians [11]. Also Obelia 
spp. was found to be negatively affected by ascidians [22], 
because the hydrozoan was absent on ascidian-domi-
nated settlement plates, possibly because it was impaired 
by other primary settlers, including soft corals [23].

We studied if and how Diplosoma listerianum influ-
ences the expansion (settlement and colonial growth) of 
another common and abundant fouler, the hydrozoan 
Obelia sp. (Péron and Lesueur 1810) and whether effects 
are consistent on small temporal and spatial scales. The 
following questions were addressed: (1) Does the pres-
ence of D. listerianum, apart from the pre-emption of 
space, influence the cover by Obelia sp.? (2) Is the effect a 
function of ascidian density?

Materials and methods
Study sites and preparation of settlement tiles
Two study sites within a distance of 700 m in the La Her-
radura Bay in northern-central Chile were chosen for this 
experiment. One site (“site A” in the following), near the 
Universidad Católica del Norte, is close to the west-facing 
mouth of the bay and therefore exposed to the prevailing 

southwesterly winds as well as wind-induced waves and 
currents. The other site (“site B” in the following) is in the 
interior part of the bay next to the Compañía Minera del 
Pacífico. It is sheltered due to being located behind the 
iron loading pier of the company, which reduces wave 
action substantially [24]. Natural hard-bottom substrata 
in both areas are mostly dominated by crustose algae, 
while, because of the impact of benthic predators, only 
few animal colonizers can successfully establish [25, 26]. 
Diplosoma listerianum is one of the most dominant set-
tlers in this environment. In a study in the same system 
it was found that the genus colonized up to 40% of the 
surface of bare substrata (plastic, pumice and styrofoam), 
which had been exposed in the bay for ~ 14 weeks [27].

In February 2006, colonies of Diplosoma were carefully 
cut into small sub-colonies (approximately 2 cm × 2 cm) 
and scraped off their substratum with a scalpel. They 
were then transplanted onto 36 PVC tiles, 15 cm × 15 cm, 
roughened with sandpaper (grain size 60). We distributed 
the colonies evenly (similar distances between adjacent 
colonies) across the tiles by placing them on the tiles 
without any further support to facilitate adhesion. For 
the following 4 days, we kept the tiles in a horizontal 
position within a flow-through seawater system to allow 
re-attachment of the colonies. On day five the water flow 
was gradually increased and colonies showing signs of 
detachment from the tiles were removed. This procedure 
was repeated every second day until 80% of the remain-
ing colonies had attached firmly after 6 days. The trans-
plantation process had no visible negative effects on the 
animals and once they had attached, survival rates were 
high. After two more weeks of incubation in the labora-
tory, tiles were fixed to ring-shaped constructions with 
a diameter of ~ 90 cm made of plastic coated wire. They 
were positioned vertically on the interior surface of the 
ring and the side that had the ascidian colonies faced 
the center of the ring. Rings were then transported to 
the study sites. There, their lower ends were attached to 
a bottom weight, while their upper ends were fixed to a 
buoy to position them in a water depth of ~ 50 cm. This 
was done prior to the main experiment to test whether 
the re-attached ascidian colonies survive and grow under 
field conditions. The tiles were brought back to the lab-
oratory 2  weeks later to generate various densities of 
Diplosoma by removing colonies to different degrees.

Experimental design and treatments
To have three levels of ascidian cover, the 36 tiles with 
Diplosoma were randomly allocated into three groups 
of 12. In one group, all tiles were completely cleaned 
(referred to as ‘control tiles’ in the following), while a sec-
ond set of 12 tiles was carefully cleared of all ongrowth, 
but of 5 homogenously distributed 1  cm2 patches of 
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Diplosoma. The remaining 12 replicates were prepared 
to have 15 evenly distributed 1  cm2 patches of ascid-
ian colonies. A final inspection with a stereomicroscope 
re-assured that tiles were free of organisms other than 
Diplosoma. Thereafter, we allocated three randomly cho-
sen replicates of each treatment level to one ring-con-
struction; two rings were then deployed at site A, while 
the remaining two were suspended at site B. Each treat-
ment combination had n = 6 replicates. For the follow-
ing two months (March and April 2006), the tiles were 
exposed to natural fouling and were sampled after 2, 4, 6 
and 8 weeks (March 7th–April 18th 2006).

Sampling
At each sampling event all tiles were detached from the 
rings and transferred to the laboratory, where they were 
kept submerged in a tank with a seawater flow-through 
system. Percent cover of all macrofoulers > 2  mm in 
diameter or height was estimated by the naked eye to 
the nearest 5% without using a grid or any other visual 
aid [28], while we excluded a 10 mm wide margin along 
all sides of the tiles with a plastic frame. This was done 
to avoid the sampling of edge effects. We recorded the 
amount of free space, i.e. tile surface that was not cov-
ered by any macroorganisms, as well as all cases of multi-
strata growth. The latter allowed coverage per tile to 
exceed 100%. We re-attached all tiles to the rings within 
3 h and deployed them again at their site of origin. Since 
we never observed recruits growing on the Diplosoma 
colonies but only on bare tile surface, we viewed the tuni-
cates as space that was not available for colonization. We 
therefore related the observed cover to the tile surface 
not occupied by Diplosoma using the following formula:

with A = total tile surface area excluding a 1 cm margin 
(= 169  cm2), C = species cover (in %), D = tile surface 
area covered by Diplosoma (in  cm2), (A*C)/100 = area (in 
 cm2) covered by a given species other than Diplosoma, 
A − D = effectively available tile surface area (surface free 
of Diplosoma).

We also assessed the richness, i.e. number of species, 
of the establishing fouling communities. On tiles that had 
initial Diplosoma cover, the ascidian was only counted in 
case it recruited again from the water column during the 
experiment.

Statistical analysis
We tested whether initial Diplosoma density had an 
effect on Obelia sp. cover with repeated measures 
ANOVA that was calculated as a mixed-effect model. 

Percent cover of a given species on

the available tile surface area

= (((A ∗ C)/100)/(A− D)) ∗ 100

We included ‘Density’ with three levels (0, 5, 15 colo-
nies per tile), ‘Site’ with two levels (site A, site B) and 
‘Week’ with four levels (week 2, week 4, week 6, week 8) 
as fixed factors in this design, while the repeatedly meas-
ured replicates were treated as the random factor. This 
analysis was conducted with (a) the total available tile 
surface area, and (b) the effectively available tile surface 
area. This was done to determine whether a switching 
behaviour, i.e. larvae rejecting the surface of Diplosoma 
on the adjacent tile surface [11], could be responsible 
for increased recruitment in the direct vicinity of the 
Diplosoma colonies. For the first analysis, we related 
Obelia sp. cover to the total tile surface area, which was 
not corrected for the presence of Diplosoma colonies. If 
larvae were not attracted by the presence of the ascid-
ian and only switched from colonies to nearby PVC sur-
faces, this analysis should not reveal any differences in 
fouler cover between Diplosoma density levels. How-
ever, if there was a Diplosoma-mediated enhancement 
in fouler recruitment, for instance because larvae were 
attracted or because their attachment and survival was 
facilitated by the ascidian, the abundances of Obelia sp. 
recruits should change with tunicate cover. Furthermore, 
we tested for effects of Diplosoma density on the expan-
sion (settlement and colonial growth) of the hydrozoan 
on the effectively available tile surface. We removed one 
data point from this data set, because it had a strong 
influence on the model.

We used residual plots to check for normality of errors 
and to test for homogeneity of variances. Obelia sp. cover 
data were square-root transformed prior to the analy-
sis. For the last sampling day, we correlated the amount 
of cover by Obelia sp. with the cover of the six most 
abundant fouling organisms using Spearman’s rank cor-
relations. This was done to identify whether any of the 
present species correlated positively or negatively with 
Obelia sp. cover. We used the data from all tiles regard-
less of initial Diplosoma cover and site.

Results
During the 8  week-long experimental period, we 
observed a total of 14 sessile taxa. Three hydrozoans: 
Obelia sp., Tubularia sp. (Linnaeus 1758), and one uni-
dentified species; three bryozoans: Bugula neritina (Lin-
naeus 1758), B. flabellata (Thompson in Gray 1848) and 
one unidentified species; three ascidians: Ciona intes-
tinalis (Linnaeus 1767), Pyura chilensis (Molina 1782) 
and Diplosoma listerianum; two brown algae: Scytosi-
phon sp. (Agardh 1820) and Ectocarpus sp. (Lyngbye 
1819). Furthermore, we found the red alga Polysiphonia 
sp. (Greville 1823), green algae belonging to the Ulvales 
(Blackman and Tansley 1902), and benthic diatoms. The 
list also includes newly settled colonies of D. listerianum, 
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while the two most abundant taxa were the hydrozoan 
Obelia sp. and the bryozoan Bugula neritina.

The previously established Diplosoma colonies grew 
fast during the first two weeks and covered between 10 
and 30% (initially 5 colonies) and 50–60% (initially 15 
colonies) of the tiles’ surface at the end of this period, 
respectively. After this, however, Diplosoma cover 
decreased on all replicates except on the sparsely covered 
tiles at site B (data not shown).

Two weeks after the onset of natural colonization, we 
found a pronounced influence of initial Diplosoma cover 
on the presence of the hydrozoan on total tile surface 
area at both study sites (Fig. 1, Table 1). It was higher in 
the presence of a dense Diplosoma cover, i.e. 15 colonies, 
than (a) on control tiles (at site B), and (b) on control tiles 
and sparsely covered tiles, i.e. with 5 Diplosoma colonies 
(at site A) (Fig. 1).

The effect of Diplosoma cover on Obelia sp., however, 
became indiscernible within 4 weeks at site A and within 
6 weeks at site B. This is reflected in a significant inter-
action between Diplosoma density and the time that 
elapsed since the start of the experiment (Table 1).

When considering only the effectively available tile 
surface area the picture is very similar. For these data, 

again, the main effect of initial Diplosoma cover and 
the interaction between cover and time since start of 
the experiment were significant (Table 2). At site B, the 
effect even persisted until the 8th week of the experi-
ment (Fig.  2, Table  2), while it disappeared within 
6 weeks at site A.

Similar to the effect on Obelia sp. cover, the initial 
presence of Diplosoma had a positive effect on fouler 

Fig. 1 Influence of Diplosoma listerianum colony density on recruitment by Obelia sp. Settlement tiles were deployed at two sites in La Herradura 
Bay, Chile, over the course of 8 weeks. Tiles had different initial densities of Diplosoma listerianum colonies (white = 0, medium grey = 5 and dark 
grey = 15). Percent cover by Obelia sp. relates to the total tile surface area. Boxes and whiskers show medians, interquartiles and non-outlier ranges

Table 1 Influence of the initial density of Diplosoma lis-
terianum colonies (D), site (S) of exposure and weeks 
since start of the experiment (W) on the recruitment of the 
hydrozoan Obelia sp. on the total tile surface area dur-
ing 8 weeks of fouling community succession

Results from repeated-measures ANOVA

Source of variation DFnumerator DFdenominator F P

D 2 30 4.55 ≤ 0.05

S 1 30 1.21 0.23

W 3 90 2.99 ≤ 0.05

D × S 2 30 1.49 0.24

D × W 6 90 2.64 ≤ 0.05

S × W 3 90 5.42 ≤ 0.01

D × S × W 6 90 1.21 0.31
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recruitment in general. Total cover was enhanced 
by Diplosoma at both sites, but this effect was again 
restricted to the first 2 weeks of colonization and disap-
peared thereafter (Fig.  3, Table  3). At site A total cover 
was only enhanced in the presence of 15 Diplosoma colo-
nies, while at site B already 5 colonies had this effect.

There was an influence of initial Diplosoma cover on 
communities’ species richness, but it varied strongly 
between sites and in time. This is reflected in a signifi-
cant 3-way interaction, while the main effect of density 
is insignificant. However, the main effects of site of expo-
sure and weeks since start of experiment are significant 
(Fig. 4, Table 4).

All tiles, regardless of initial Diplosoma cover and site 
of exposure, showed a minimum median cover of 81% 
after 8  weeks of ongoing colonization. Furthermore, we 
observed that the formation of biofilms, i.e. bacteria and 
benthic diatoms, was increased near Diplosoma colonies 
(Ina Krüger pers. obs.). At the last sampling day, coverage 
by two colonizers correlated negatively with Obelia sp. 
cover. This was the case for the brown alga Ectocarpus sp. 
(Rho = − 0.34, p ≤ 0.05) and for green algae of the Ulvales 
(Rho = − 0.34, p ≤ 0.05), while there was no significant 
correlation between Obelia sp. and (a) D. listerianum, (b) 
the bryozoan B. neritina, (c) the red alga Polysiphonia sp., 
as well as (d) the hydrozoan Tubularia sp. These six spe-
cies together constituted 70% of the cover on all tiles.

Table 2 Influence of the initial density of Diplosoma lis-
terianum colonies (D), site (S) of exposure and weeks 
since start of the experiment (W) on the recruitment 
of the hydrozoan Obelia sp. on the effectively available 
tile surface area (total area—initial Diplosoma cover) dur-
ing 8 weeks of fouling community succession

Results from repeated measures ANOVA

Source of variation DFnumerator DFdenominator p

D 2 30 15.11 ≤ 0.001

S 1 30 4.26 ≤ 0.05

W 3 89 1.12 0.34

D × S 2 30 2.94 0.07

D × W 6 89 4.80 ≤ 0.001

S × W 3 89 1.78 0.16

D × S × W 6 89 1.41 0.22

Fig. 2 Influence of Diplosoma listerianum colony density on recruitment by Obelia sp. Settlement tiles were deployed at two sites in La Herradura 
Bay, Chile, over the course of 8 weeks. Tiles had different initial densities of Diplosoma listerianum colonies (white = 0, medium grey = 5 and dark 
grey = 15). Percent cover by Obelia sp. relates to the effectively available tile surface area. Boxes and whiskers show medians, interquartiles and non-
outlier ranges
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Discussion
The initial presence of Diplosoma listerianum on other-
wise bare tiles had a positive effect on the cover of the 
hydrozoan Obelia sp. within the first weeks of succession. 
When interpreting this effect, it is important to note that 
the abundance of the hydrozoan is determined by set-
tlement rates of larvae and/or vegetative fragments as 

well as by post-settlement colonial growth or by a com-
bination of these processes. Since the hydrozoan grew 
fast, we were not able to identify unambiguously which 
mechanism drove the pattern we observed. However, the 
positive influence was consistent between the two study 
sites when Diplosoma was present in high abundances 
(15 colonies per 169 cm2), while low Diplosoma cover (5 
colonies per 169  cm2) affected hydrozoan cover only at 
one of the sites (site B). Furthermore, the effect of initial 
Diplosoma cover on Obelia sp. lasted longer at site B than 
at site A. In contrast to previous studies that reported 
negative effects of colonial ascidians on other colonizers 
[11, 14], we found that the presence of this compound 
ascidian had a positive or no influence on the presence 
of the highly abundant fouler Obelia sp. as well as on the 
total cover by fouling organisms that established on the 
settlement tiles in this study. Interestingly, there was no 
clear influence of initial Diplosoma cover on the number 
of species present in the fouling communities.

In a previous study several fouling species, such as 
bryozoans, polychaetes and cirripedes, showed aggre-
gated settlement on open surfaces adjacent to colonies 
of Diplosoma [11]. This was attributed to limited larval 
mobility after first substratum contact, which led to the 

Fig. 3 Influence of Diplosoma listerianum colony density on total cover by fouling organisms. Settlement tiles were deployed at two sites in La 
Herradura Bay, Chile, over the course of 8 weeks. Tiles had different initial densities of Diplosoma listerianum colonies (white = 0, medium grey = 5 
and dark grey = 15). Total cover relates to the effectively available tile surface area. Boxes and whiskers show medians, interquartiles and non-outlier 
ranges

Table 3 Influence of the initial density of Diplosoma lis-
terianum colonies (D), site (S) of exposure and weeks 
since start of the experiment (W) on total cover by foul-
ing organisms on the effectively available tile surface area 
(total tile area—initial Diplosoma cover) during 8 weeks 
of succession

Results from repeated measures ANOVA

Source of variation DFnumerator DFdenominator F p

D 2 30 5.51 ≤ 0.01

S 1 30 5.20 ≤ 0.05

W 3 90 2.72 ≤ 0.05

D × S 2 30 1.02 0.37

D × W 6 90 3.15 ≤ 0.01

S × W 3 90 1.42 0.24

D × S × W 6 90 1.27 0.28
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immediate colonization of nearby areas after the larvae 
rejected the ascidian tunica as a settlement substratum. 
This was called ‘switching behaviour’ and it was con-
cluded that the positive effect of tunicate presence on 
other colonizers was only because of the pre-emption of 
space and that no settlement cues attracted the larvae. 
This assumption was supported by the observation that 

the total number of colonizers per settlement tiles was 
lower in the presence of the tunicate than on their ascid-
ian-free control tiles [11].

In contrast to these findings, in our experiment the 
settlement near tunicate colonies as well as the total set-
tlement per tile was positively related to Diplosoma densi-
ties. As a consequence, larval switching to adjacent areas 
after rejecting the ascidians as a settlement substratum 
cannot be the explanation for increased settlement rates 
near Diplosoma colonies. Furthermore, in our study the 
presence of Diplosoma colonies had no influence on the 
number of species that established on the settlement tiles.

The fact that ascidians can consume invertebrate lar-
vae [11, 15, 29], and that their tunics may have antifoul-
ing properties [30] makes a direct facilitative effect or 
even the attraction of colonizers by Diplosoma unlikely. 
We therefore suggest other mechanisms that could have 
enhanced the settlement and/or the post-settlement 
growth of the hydroid. The first explanatory model is 
based on the observation that during the experiment, 
biogenic material accumulated near Diplosoma colo-
nies, which led to the formation of a biofilm that was 
presumably richer than on other parts of the tiles. Since 
the material presumably stemmed from the tunicates, i.e. 

Fig. 4 Influence of Diplosoma listerianum colony density on species richness of the establishing fouling communities. Settlement tiles were 
deployed at two sites in La Herradura Bay, Chile, over the course of 8 weeks. Tiles had different initial densities of Diplosoma listerianum colonies 
(white = 0, medium grey = 5 and dark grey = 15). On tiles that had initial Diplosoma listerianum cover, the species was only counted in case it 
recruited again during the experiment. Boxes and whiskers show medians, interquartiles and non-outlier ranges

Table 4 Influence of the initial density of Diplosoma lis-
terianum colonies (D), site (S) of exposure and weeks 
since start of the experiment (W) on species richness of the 
establishing fouling communities during 8 weeks of suc-
cession

Results from repeated measures ANOVA

Source of variation DFnumerator DFdenominator F p

D 2 30 1.29 0.29

S 1 30 6.76 ≤ 0.05

W 3 90 16.17 ≤ 0.001

D × S 2 30 0.11 0.90

D × W 6 90 1.77 0.11

S × W 3 90 4.74 ≤ 0.01

D × S × W 6 90 3.07 ≤ 0.01



Page 8 of 10Krüger et al. Helgol Mar Res  (2018) 72:4 

faeces or mucus, it is possible that these products during 
their decay enhanced the growth of bacteria and diatoms 
in the direct vicinity of the ascidians. Such biofilms are 
ubiquitous in the marine environment [31–33], and play 
an important role in the colonization of surfaces. They 
consist of bacteria, diatoms, and extracellular material/
exopolymers and may have inhibitive [34–36] as well as 
facilitative effects [37–40] on the settlement of inverte-
brates and algae. The mode of action of facilitative effects 
can reach from passive entrapment to active attraction 
and both mechanisms may act simultaneously. In our 
experiment, settlement of Obelia sp., which can also pro-
liferate by the regeneration of hydroid fragments, could 
have been enhanced by the entrapment of drifting frag-
ments and/or larvae in sticky extracellular polymers. 
Additionally or alternatively, larvae could have been 
attracted by chemical cues released from the biofilm 
[41]. We consider this model to be the most likely expla-
nation for the observations we made and if it is correct, 
the facilitation effect exerted by Diplosoma was limited 
to the moment of settlement and cannot have promoted 
hydrozoan post-settlement growth.

Further alternative models that could explain not only 
increased settlement but also increased growth in Obe-
lia sp. on tiles carrying Diplosoma are (1) the alteration 
of habitat structure by the tunicates with consequences 
for small-scale hydrodynamics that facilitate larval set-
tlement and/or lead to a reduction in the speed of water 
currents (the latter may enhance food capture rates in 
the hydrozoan); or (2) the pumping activity of the colo-
nial ascidians, which, similar to the three-dimensional 
structure, might modify water movements in the ben-
thic boundary layer with positive effects on other filter or 
tentacle feeders, e.g. by increasing the availability of food 
[42]. Facilitative effects of residents on the recruitment of 
other species can also be the consequence of increased 
habitat complexity [43–45]. However, we assume that 
this does not play a role in the case of Diplosoma, because 
the colonial ascidian has an encrusting growth form and 
does not build complex structures.

At the study site that was more protected (site B), the 
effect of Diplosoma cover was more pronounced since 
both density levels provoked an initial effect and it 
lasted longer than at site A. Possibly this was because of 
a higher abundance of larvae or of drifting colony frag-
ments in the more turbulent waters, what lead to a faster 
colonization that quickly overrode the initial effect of 
Diplosoma. The fact that we replicated this study only at 
one exposed and at one protected site does not allow a 
general conclusion about the possible influence of hydro-
dynamic forces on the initial effect of Diplosoma, since 
we cannot exclude that other site-specific characteristics 
were responsible for the picture we observed. However, 

when we inspected both study sites before the start of the 
experiment no other potentially relevant site characteris-
tics were detected [see also 24].

In this experiment, all tiles were completely occupied 
by macrofoulers after 2 months; total cover averaged 
across all tiles at the last sampling event was 99%. A set of 
6 organisms constituted ~ 70% of the assemblages on the 
effectively available tile surface area: the bryozoan Bugula 
neritina (mean cover across all tiles: 12% ± 7% SD), green 
algae of the order Ulvales (7% ± 8%), the brown alga Ecto-
carpus sp. (23% ± 22%), the red alga Polysiphonia sp. 
(9% ± 7%), the hydrozoan Tubularia sp. (3% ± 5%), and 
Diplosoma sp. (16% ± 20%). For Ectocarpus sp. and for 
the green algae we found that at the last sampling day 
their cover correlated negatively with the abundance of 
Obelia sp. The latter is known as a successful primary 
colonizer, which can rapidly occupy bare substrata and 
dominate communities at early successional stages or in 
disturbed environments [46–48]. However, it can pre-
sumably not persist in the presence of competitors [23, 
49]. We therefore assume that in our experiment, Obelia 
sp. was partly outcompeted and replaced by other colo-
nizers such as Ectocarpus sp. or green algae. Although 
both of them are also opportunistic species that consti-
tute rather weak competitors, they may have overgrown 
Obelia sp. and cut it off from food supply. This process 
was apparently independent of Diplosoma presence and 
therefore obliterated the initial differences between tiles 
carrying Diplosoma colonies and those that were empty.

Our results are important for understanding commu-
nity succession in marine benthic habitats. It has been 
hypothesized that initial colonizers can preempt space 
and other resources and by this drive community suc-
cession into a particular direction [47]. This would mean 
that, depending on which species settles first, commu-
nities, which establish on similar substrata in the same 
region, can develop into different directions and may 
then sharply differ in composition and structure. This, in 
turn, could also lead to differences in energy and matter 
fluxes through these communities. However, our findings 
confirm previous studies from the same study system 
which showed that—although initial differences between 
them occurred—hardbottom communities converge at 
later successional stages. This is mainly due to competi-
tively dominant species, which suppress others and can 
by this dominate fouling communities [27, 50]. So, at 
least in the highly productive Chilean system which we 
investigated, differences in substratum properties [27] 
or in the arrival sequence of initial colonizers [24, 50, 
this study] can be relevant at early successional stages, 
but disappear once dominant competitors colonize and 
expand in the communities.
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Conclusions
In summary, we can conclude that the presence of D. 
listerianum increased the settlement and/or the post-
settlement growth in the opportunistic colonizer Obelia 
sp. at a very early successional stage, but did not enhance 
the recruitment, i.e. the long-term post-settlement sur-
vival, of the hydrozoan. The strength of the effect differed 
between locations although it is not clear what mecha-
nism was responsible for this. Over larger timescales, 
however, community structure remained unaffected by 
the initial presence of the ascidian, most likely because 
the species initially favoured by Diplosoma as well as 
the ascidian itself were replaced by stronger competi-
tors during the course of succession [51]. Therefore, in 
our system, Diplosoma was not a founder species that 
determined the later course of community succession. It 
is more likely that species identity and competitiveness 
drove the long-term composition of the benthic commu-
nities in La Herradura Bay [50]. The invasive potential of 
Diplosoma species, which is well documented by numer-
ous invasions that have been reported from all over the 
world [52–54], suggests that this genus will become 
abundant in benthic habitats from which it is currently 
still absent in the future. We therefore think that further 
studies on the short- and long-term effects of this ascid-
ian on fouling processes are needed.
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