89 research outputs found

    COMPARISON OF LANDSAT-9 AND PRISMA SATELLITE DATA FOR LAND USE / LAND COVER CLASSIFICATION

    Get PDF
    Land use and land cover (LU/LC) detection has great significance in management of natural resources and protection of environment. Hence, monitoring LU/LC with the state-of-the-art approaches has gained importance during the recent years and free access satellite images have become valuable data source. The aim of this study is to compare classification abilities of Landsat-9 and PRISMA satellite images while applying Support Vector Machine (SVM) algorithm to distinguish different LU/LC classes. For this purpose, the study area was chosen to be of heterogeneous character that includes industrial area, roads, residential area, airport, sea, forest, vegetation and barren land. When the classification results were visually examined, it was seen that forest, industrial area and airport classes were distinguished more accurately than other classes. On the other hand, qualitative results were validated with quantitative accuracy assessment results. The overall accuracy (OA) and Kappa coefficient values were calculated as 89.33 and 0.88 for Landsat-9 satellite image and as 92.33 and 0.91 for the PRISMA satellite image, respectively. In the accuracy assessment results, although Landsat-9 and PRISMA satellite images showed similar classification performances, a slight improvement was observed by using the PRISMA satellite image. The findings indicated that although both of the Landsat-9 and PRISMA satellite images were proper data to assess the LU/LC of the complex region, a slightly more performance could be achieved by using the PRISMA satellite image

    Granger Causality Mapping during Joint Actions Reveals Evidence for Forward Models That Could Overcome Sensory-Motor Delays

    Get PDF
    Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays

    Examining ecological validity in social interaction: problems of visual fidelity, gaze, and social potential

    Get PDF
    Social interaction is an essential part of the human experience, and much work has been done to study it. However, several common approaches to examining social interactions in psychological research may inadvertently either unnaturally constrain the observed behaviour by causing it to deviate from naturalistic performance, or introduce unwanted sources of variance. In particular, these sources are the differences between naturalistic and experimental behaviour that occur from changes in visual fidelity (quality of the observed stimuli), gaze (whether it is controlled for in the stimuli), and social potential (potential for the stimuli to provide actual interaction). We expand on these possible sources of extraneous variance and why they may be important. We review the ways in which experimenters have developed novel designs to remove these sources of extraneous variance. New experimental designs using a ‘two-person’ approach are argued to be one of the most effective ways to develop more ecologically valid measures of social interaction, and we suggest that future work on social interaction should use these designs wherever possible

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div

    Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    Get PDF
    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several studied solid electrolyte materials in 3D all-solid-state lithium ion batteries was investigated. Several inorganic compounds with high ionic conductivity for all solid state lithium ion batteries have been proposed in recent literatures. These are discussed in Chapter 2 in terms of the relationship with the structural features and the lithium ion mobility. The key criteria of high lithium ion mobility in any solid lithium ion conductor are the concentration of the charge carriers and vacancies, the "bottleneck size" which is the cross sectional area that lithium ion has to pass through, the connectivity of the sites where lithium ions are mobile and the polarizability of the anions. Based on the structural features, the very well known Li0.50L0.50TiO3 (LLT) compound with perovskite-type structure was modified to increase the bottleneck size by anionic substitution of oxygen by the relatively larger anion, nitrogen, in Chapter 3. The resulting oxynitride compound contains 0.58 atoms of nitrogen in the formula unit and has a higher lattice volume up to 4.4 %. Although it is expected that lithium ions can move more easily in this structure, impedance measurements show that the ionic conductivity is decreasing with increase in nitrogen content. This has been explained by the distortion in TiO6 polyhedra which is slowing down the lithium ion motion. In addition we observed anionic vacancies which are also changing the chemical environment of the lithium. The anionic vacancies which are formed during the substitution can be prevented by cationic substitution of Ti4+ with Ta5+ to combine with anionic substitution in oxygen positions. This type of approach will not only prevent anionic vacancies but will also increase the electro chemical stability of this compound towards possible reduction when in contact with lithium. Li7La3Zr2O12 (LLZO) with garnet type structure has recently become of high interest due to its potential as a solid-state lithium ion conductor. It has a high ionic conductivity (10- 4 S/cm for the cubic phase at room temperature) as well as a good stability against lithium and moisture. However, LLZO crystallizes in three different phases; low and high temperature cubic and tetragonal. The high temperature cubic phase is preferred because it has a 2 orders of magnitude higher ionic conductivity than the tetragonal phase whereas the synthesis of the cubic phase needs a high calcination temperature which makes it difficult to control the stoichiometry. Recently it has also been found that due to the high calcination temperature, the aluminum contamination from the reaction crucible (Al2O3) enables and stabilizes the cubic phase formation. To have a better control on the chemical composition and prevent contamination, low temperature synthesis by a sol-gel method was investigated in Chapter 4. The tetragonal phase was successfully synthesized at 1073 K. This is 200 K lower than any previously reported results and a new low temperature (973 K) cubic phase was reported for the first time. The ionic conductivities of the tetragonal phase were determined and to be in the same order of magnitude with those of the materials synthesized by conventional solid-state synthesis. Unfortunately, the ionic conductivity of the new cubic phase could not be determined due to the temperature limitation during the densification process which leads porous specimens. Li5La3Ta2O12 (LLTO) and Li6BaLa2Ta2O12 (LLBTO) with garnet type structure are yet other promising candidates as solid lithium ion conductors. They are chemically stabile against lithium and moisture due to the presence of Ta5+ in the garnet compound series. LLTO has a lithium ionic conductivity of 10-6 S/cm, whereas LLBTO exhibits a conductivity of 10-5 S/cm at room temperature due to its larger unit cell and higher lithium ion concentration. The sol-gel synthesis of garnet compounds was investigated in Chapter 5. It is found that nano-sized compounds have better sintering ability and the ionic conductivities are found in the same order magnitude with a slightly increase compared to the compounds synthesized by conventional solid state methods. The sol-gel synthesis of garnet compounds opened up a new approach in the preparation of solid-state lithium ion conductors with 3D structure. This is discussed in detail in Chapter 6 for the preparation of 3 dimensional ordered macraporous (3DOM) materials. LLTO was investigated for 3DOM material preparation experiments due to the relatively lower synthesis temperature resulting in smaller grain sized compounds compared to other members of garnet compounds. 3DOM membranes of Li5La3Ta2O12 (LLTO) for all-solid-state lithium ion batteries were prepared by using colloidal crystal templating of mono dispersed polystyrene (PS) spheres combined with sol-gel synthesis of LLTO precursor. Two different types of solvent (EtOH and HAc/EG) and 3 different sizes of PS spheres (1, 3 and 5 µm) were used for the preparation of 3DOM membranes. The effect of the solvent type and the PS sphere size on the morphology of the 3DOM membranes was investigated. Our investigations show that using a HAc/EG based solution with the template prepared by using 5 µm PS spheres results in the most interconnected and long range ordered membranes. The 3DOM membranes can be used to fabricate all-solid-state lithium ion batteries using a "sandwich structure" which is composed of a dense LLTO layer having the 3DOM layer on both sides. Then by immersing the electrode material in the pores of the 3DOM layer, the all-solid-state battery can easily be fabricated. As an alternative 3D structuring method, nano printing by soft lithography is described in Chapter 7. The sol-gel synthesis of Li0.29La0.54TiO3 (LLT) with perovskite structure and its patterning by soft lithography was studied. A 3D patterned LLT structure was obtained in the micro molding experiments and for the first time ceramic electrolyte materials were deposited with 3 dimensional structures (line and pit patterns) starting with simple sol-gel synthesis were combined with micro molding experiments by soft lithography. The patterning experiments conducted on Si substrates and\or Pt coated Si substrate. The Si substrate was found to be more suitable and yielded better patterns compared to Pt coated Si substrate because the deposition performed on Pt coated Si substrate yielded unwanted residual layers in both line and pit pattern deposition experiments. This may be explained due to the wetting properties of the Pt surface and the durability of Pt coated Si substrates at 973 K. AFM and SEM measurements were done to investigate the morphology of the patterns deposited by soft lithography and it shows that by using the different type of mold it is possible to replicate the desired structure. In conclusion, sol-gel synthesis is a successful method to prepare various lithium ion battery electrolyte materials at low temperature and it makes use of inexpensive precursors of metal salts (nitrates, acetates or oxides) combined with metal alkoxides. Using sol-gel precursor solutions, we demonstrated the successful preparation of 3D structured electrolyte materials by soft lithography and crystal templating for 3D all solid state lithium ion batteries. We found that the soft lithography is a very accurate technique (sub-micrometer precision) and it can easily be applicable to larger scales. In contrast, the accuracy and the applicability of crystal templating is dependent on the template sphere size and the precursor material. As a follow up research, the studied preparation techniques (such as crystal templating and micro patterning) can be combined with impregnation of the electrode material by previously investigated deposition techniques such as; spin-coating, atomic layer deposition (ALD) or chemical vapor deposition (CVD). The micro patterning experiments can easily be used for any type of material which can be prepared by sol-gel synthesis. Since the sol-gel synthesis of active electrode materials was established in literature, 3D all-solid-state lithium ion battery can be easily prepared by deposition of different array of compounds separately on the same substrate. It is also possible with non-oxidic compounds which could be generated by changing from an air atmosphere to different (N2, NH3, H2, etc.) atmospheres during the high-temperature step of the synthesis. Overall, the combination of rather low tech and low-cost processes (sol-gel combined with soft-lithography or crystal templating) using simple starting materials and equipment (vacuum pump and heater plate) makes it possible to create sub-micrometer structures of electrolyte materials in the normal lab environment. It is likely that this manufacturing route can be applied to various other battery materials as well as large scales

    Eye'm talking to you: Speakers' gaze direction modulates co-speech gesture processing in the right MTG

    Get PDF
    Contains fulltext : 139789.pdf (publisher's version ) (Open Access)Recipients process information from speech and co-speech gestures, but it is currently unknown how this processing is influenced by the presence of other important social cues, especially gaze direction, a marker of communicative intent. Such cues may modulate neural activity in regions associated either with the processing of ostensive cues, such as eye gaze, or with the processing of semantic information, provided by speech and gesture. Participants were scanned (fMRI) while taking part in triadic communication involving two recipients and a speaker. The speaker uttered sentences that were and were not accompanied by complementary iconic gestures. Crucially, the speaker alternated her gaze direction, thus creating two recipient roles: addressed (direct gaze) vs unaddressed (averted gaze) recipient. The comprehension of Speech&Gesture relative to SpeechOnly utterances recruited middle occipital, middle temporal and inferior frontal gyri, bilaterally. The calcarine sulcus and posterior cingulate cortex were sensitive to differences between direct and averted gaze. Most importantly, Speech&Gesture utterances, but not SpeechOnly utterances, produced additional activity in the right middle temporal gyrus when participants were addressed. Marking communicative intent with gaze direction modulates the processing of speech-gesture utterances in cerebral areas typically associated with the semantic processing of multi-modal communicative acts.7 p
    corecore