3,234 research outputs found

    Law of Genome Evolution Direction : Coding Information Quantity Grows

    Full text link
    The problem of the directionality of genome evolution is studied. Based on the analysis of C-value paradox and the evolution of genome size we propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer from outside. The function-coding information quantity of a genome consists of two parts, p-coding information quantity which encodes functional protein and n-coding information quantity which encodes other functional elements except amino acid sequence. The evidences on the evolutionary law about the function-coding information quantity are listed. The needs of function is the motive force for the expansion of coding information quantity and the information quantity expansion is the way to make functional innovation and extension for a species. So, the increase of coding information quantity of a genome is a measure of the acquired new function and it determines the directionality of genome evolution.Comment: 16 page

    Characterization of prion disease associated with a two-octapeptide repeat insertion

    Get PDF
    Genetic prion disease accounts for 10–15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt–Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt–Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt–Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt–Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk

    Protocol for the development and validation procedure of the managing the link and strengthening transition from child to adult mental health care (MILESTONE) suite of measures

    Get PDF
    Background: Mental health disorders in the child and adolescent population are a pressing public health concern. Despite the high prevalence of psychopathology in this vulnerable population, the transition from Child and Adolescent Mental Health Services (CAMHS) to Adult Mental Health Services (AMHS) has many obstacles such as deficiencies in planning, organisational readiness and policy gaps. All these factors contribute to an inadequate and suboptimal transition process. A suite of measures is required that would allow young people to be assessed in a structured and standardised way to determine the on-going need for care and to improve communication across clinicians at CAMHS and AMHS. This will have the potential to reduce the overall health economic burden and could also improve the quality of life for patients travelling across the transition boundary. The MILESTONE (Managing the Link and Strengthening Transition from Child to Adult Mental Health Care) project aims to address the significant socioeconomic and societal challenge related to the transition process. This protocol paper describes the development of two MILESTONE transition-related measures: The Transition Readiness and Appropriateness Measure (TRAM), designed to be a decision-making aide for clinicians, and the Transition Related Outcome Measure (TROM), for examining the outcome of transition. Methods: The TRAM and TROM have been developed and were validated following the US FDA Guidance for Patient-reported Outcome Measures which follows an incremental stepwise framework. The study gathers information from service users, parents, families and mental health care professionals who have experience working with young people undergoing the transition process from eight European countries. Discussion: There is an urgent need for comprehensive measures that can assess transition across the CAMHS/AMHS boundary. This study protocol describes the process of development of two new transition measures: the TRAM and TROM. The TRAM has the potential to nurture better transitions as the findings can be summarised and provided to clinicians as a clinician-decision making support tool for identifying cases who need to transition and the TROM can be used to examine the outcomes of the transition process. Trial registration: MILESTONE study registration: ISRCTN83240263 Registered 23-July-2015 - ClinicalTrials.gov NCT03013595 Registered 6 January 2017

    Characterization of Prion Disease Associated with a Two-Octapeptide Repeat Insertion

    Get PDF
    Genetic prion disease accounts for 10–15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt–Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt–Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt–Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt–Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk

    CNTF, COMT, DDR1, DISC1, DRD2, DRD3 es DTNBP1 kandidáns gének vizsgálata szkizofréniában: eredmények a Magyar SCHIZOBANK Konzorcium vizsgálataból

    Get PDF
    Schizophrenia is a chronic, debilitating psychiatric disorder characterized by heterogeneous clinical symptoms. Although the pathogenesis of this disorder is poorly understood, several lines of evidence support the role of both common and rare genetic variants in the etiology of schizophrenia. Common variants, single nucleotide polymorphisms can be investigated by candidate gene association studies or genome-wide association studies, while rare variants, single nucleotide variants are assessable by means of candidate gene resequencing or whole-exome and genome sequencing using next generation sequencing. In this study we investigated polymorphisms of 7 candidate genes in a Hungarian schizophrenia cohort. Candidate genes were chosen on the basis of previous results and biological plausibility. 390 patients were recruited in 5 centers in the framework of the Hungarian SCHIZOBANK Consortium, the schizophrenia sample was contrasted to 1069 healthy control individuals. In this sample SNPs of DDR1 and DRD2 genes demonstrated significant association with schizophrenia. The role of DDR1 and DRD2 genes in the etiology of schizophrenia warrant further investigation, based on their genomic localization and biological functions

    Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells"

    Get PDF
    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity
    corecore