141 research outputs found

    The wave equation approach to an inverse eigenvalue problem for an arbitrary multiply connected drum in ℝ

    Get PDF
    The spectral function μˆ(t)=∑j=1∞exp(−itμj1/2), where {μj}j=1∞ are the eigenvalues of the two-dimensional negative Laplacian, is studied for small |t| for a variety of domains, where −∞<t<∞ and i=−1. The dependencies of μˆ(t) on the connectivity of a domain and the Robin boundary conditions are analyzed. Particular attention is given to an arbitrary multiply-connected drum in ℝ2 together with Robin boundary conditions on its boundaries

    Applying Differential Transformation Method to the One-Dimensional Planar Bratu Problem

    Get PDF
    Abstract This paper is the application of differential transformation method (DTM) to solve the Bratu problem. A considerable research works have been conducte

    Risk and protective factors for self-harm and suicide in children and adolescents: a systematic review and meta-analysis protocol.

    Get PDF
    Introduction Self-harm and suicide are major public health concerns among children and adolescents. Many risk and protective factors for suicide and self-harm have been identified and reported in the literature. However, the capacity of these identified risk and protective factors to guide assessment and management is limited due to their great number. This protocol describes an ongoing systematic review and meta-analysis which aims to examine longitudinal studies of risk factors for self-harm and suicide in children and adolescents, to provide a comparison of the strengths of association of the various risk factors for self-harm and suicide and to shed light on those that require further investigation. Methods and analysis We perform a systematic search of the literature using the databases EMBASE, PsycINFO, Medline, CINAHL and HMIC from inception up to 28 October 2020, and the search will be updated before the systematic review publication. Additionally, we will contact experts in the field, including principal investigators whose peer-reviewed publications are included in our systematic review as well as investigators from our extensive research network, and we will search the reference lists of relevant reviews to retrieve any articles that were not identified in our search. We will extract relevant data and present a narrative synthesis and combine the results in meta-analyses where there are sufficient data. We will assess the risk of bias for each study using the Newcastle–Ottawa Scale and present a summary of the quantity and the quality of the evidence for each risk or protective factor. Ethics and dissemination Ethical approval will not be sought as this is a systematic review of the literature. Results will be published in mental health journals and presented at conferences focused on suicide prevention

    Shikonin Increases Glucose Uptake in Skeletal Muscle Cells and Improves Plasma Glucose Levels in Diabetic Goto-Kakizaki Rats

    Get PDF
    Glucose is the most common substrate for energy metabolism. Despite the varying demands for glucose, the body needs to regulate its internal environment and maintain a constant and stable condition. Glucose homeostasis requires harmonized interaction between several tissues, achieving equilibrium between glucose output and uptake. In this thesis we aimed to investigate factors modulating glucose homeostasis in a rat model of type 2 diabetes, the Goto-Kakizaki (GK) rat. In addition, we investigated sex differences in hepatic carbohydrate and lipid metabolism in healthy rats. In Paper I, three-week but not three-day treatment with a Southeast Asian herb, Gynostemma pentaphyllum (GP), significantly reduced plasma glucose (PG) levels in GK rats. An intra-peritoneal glucose tolerance test (IPGTT) was significantly improved in GP-treated compared to placebo-treated group. In the GP treated rats, the glucose response in an intra-peritoneal pyruvate tolerance test was significantly lower, indicating decreased gluconeogenesis, and hepatic glucose output (HGO) was reduced. GP-treatment significantly reduced hepatic glycogen content, but not glycogen synthase activity. The study provides evidence that the GP extract exerted anti-diabetic effect in GK rats, reducing PG levels and HGO, suggesting that GP improves the hepatic insulin sensitivity by suppressing gluconeogenesis. In Paper II, shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increased glucose uptake in L6 myotubes, but did not phosphorylate Akt. Furthermore we found no evidence for the involvement of AMP activated protein kinase (AMPK) in shikonin induced glucose uptake. Shikonin increased the intracellular levels of calcium in these cells and stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myotubes. In GK rats treated with shikonin once daily for 4 days, PG levels were significantly decreased. In an insulin sensitivity test, the absolute PG levels were significantly lower in the shikonin-treated rats. These findings suggest that shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. In Paper III, GK and control Wistar rats were injected daily for up to 4 weeks with either a non-hematopoietic erythropoietin analog ARA290 or with placebo. PG levels in GK but not Wistar rats were significantly lower in ARA290-treated compared to placebo. After 2 and 4 weeks, the IPGTT was significantly improved in ARA290 treated GK rats. In insulin and pyruvate tolerance tests, glucose responses were similar in ARA290 and placebo groups. In isolated GK rat islets, glucose-stimulated insulin release was two-fold higher and islet intracellular calcium concentrations in response to several secretagogues were significantly higher in ARA290-treated than in placebo-treated GK rats. These findings indicate that treatment with ARA290 significantly improved glucose tolerance in diabetic GK rats, most likely due to improvement of insulin release. In Paper IV, sex differences in hepatic carbohydrate and lipid metabolism were characterized in healthy rats. No sex-differences were observed regarding hepatic triglyceride content, fatty acid oxidation rates or insulin sensitivity. Male rats had higher ratios of insulin to glucagon levels, increased hepatic glycogen content, a lower degree of AMPK phosphorylation, a higher rate of glucose production and higher expression levels of gluconeogenic genes, as compared to female rats. A sex-dependent response to mild starvation was observed with males being more sensitive. In conclusion, sex-differences reflect a higher capacity of the healthy male rat liver to respond to increased energy demands. Key words: glucose homeostasis, type 2 diabetes, GK rats, L6 myotubes, hepatic glucose output, insulin sensitivity, sex differences

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Gabapentin for the hemodynamic response to intubation: systematic review and meta-analysis

    Get PDF
    Purpose Endotracheal intubation is the gold standard for securing the airway before surgery. Nevertheless, this procedure can produce an activation of the sympathetic nervous system and result in a hemodynamic response which, in high-risk patients, may lead to cardiovascular instability and myocardial ischemia. The aim of this review was to evaluate whether gabapentin can attenuate this response and whether such an attenuation could translate into reduced myocardial ischemia and mortality. Source We searched MEDLINE®, EMBASE™, CINAHL, AMED, and unpublished clinical trial databases for randomized-controlled trials that compared gabapentin with control, fentanyl, clonidine, or beta blockers for attenuating the hemodynamic response to intubation. Primary outcomes were mortality, myocardial infarction, and myocardial ischemia. Secondary outcomes were hemodynamic changes following intubation. Principal findings We included 29 randomized trials with only two studies at low risk of bias. No data were provided for the primary outcomes and no studies included high-risk patients. The use of gabapentin resulted in attenuation in the rise in mean arterial blood pressure [mean difference (MD), −12 mmHg; 95% confidence interval (CI), −17 to −8] and heart rate (MD, −8 beats·min−1; 95% CI, −11 to −5) one minute after intubation. Gabapentin also reduced the risk of hypertension or tachycardia requiring treatment (risk ratio, 0.15; 95% CI, 0.05 to 0.48). Data were limited on adverse hemodynamic events such as bradycardia and hypotension. Conclusion It remains unknown whether gabapentin improves clinically relevant outcomes such as death and myocardial infarction since studies failed to report on these. Nevertheless, gabapentin attenuated increases in heart rate and blood pressure following intubation when compared with the control group. Even so, the studies included in this review were at potential risk of bias. Moreover, they did not include high-risk patients or report adverse hemodynamic outcomes. Future studies are required to address these limitations

    History, epidemiology and regional diversities of urolithiasis

    Get PDF
    Archeological findings give profound evidence that humans have suffered from kidney and bladder stones for centuries. Bladder stones were more prevalent during older ages, but kidney stones became more prevalent during the past 100 years, at least in the more developed countries. Also, treatment options and conservative measures, as well as ‘surgical’ interventions have also been known for a long time. Our current preventive measures are definitively comparable to those of our predecessors. Stone removal, first lithotomy for bladder stones, followed by transurethral methods, was definitively painful and had severe side effects. Then, as now, the incidence of urolithiasis in a given population was dependent on the geographic area, racial distribution, socio-economic status and dietary habits. Changes in the latter factors during the past decades have affected the incidence and also the site and chemical composition of calculi, with calcium oxalate stones being now the most prevalent. Major differences in frequency of other constituents, particularly uric acid and struvite, reflect eating habits and infection risk factors specific to certain populations. Extensive epidemiological observations have emphasized the importance of nutritional factors in the pathogenesis of urolithiasis, and specific dietary advice is, nowadays, often the most appropriate for prevention and treatment of urolithiasis

    Manufacture Techniques of Chitosan-Based Microcapsules to Enhance Functional Properties of Textiles

    Get PDF
    In recent years, the textile industry has been moving to novel concepts of products, which could deliver to the user, improved performances. Such smart textiles have been proven to have the potential to integrate within a commodity garment advanced feature and functional properties of different kinds. Among those functionalities, considerable interest has been played in functionalizing commodity garments in order to make them positively interact with the human body and therefore being beneficial to the user health. This kind of functionalization generally exploits biopolymers, a class of materials that possess peculiar properties such as biocompatibility and biodegradability that make them suitable for bio-functional textile production. In the context of biopolymer chitosan has been proved to be an excellent potential candidate for this kind of application given its abundant availability and its chemical properties that it positively interacts with biological tissue. Notwithstanding the high potential of chitosan-based technologies in the textile sectors, several issues limit the large-scale production of such innovative garments. In facts the morphologies of chitosan structures should be optimized in order to make them better exploit the biological activity; moreover a suitable process for the application of chitosan structures to the textile must be designed. The application process should indeed not only allow an effective and durable fixation of chitosan to textile but also comply with environmental rules concerning pollution emission and utilization of harmful substances. This chapter reviews the use of microencapsulation technique as an approach to effectively apply chitosan to the textile material while overcoming the significant limitations of finishing processes. The assembly of chitosan macromolecules into microcapsules was proved to boost the biological properties of the polymer thanks to a considerable increase in the surface area available for interactions with the living tissues. Moreover, the incorporation of different active substances into chitosan shells allows the design of multifunctional materials that effectively combine core and shell properties. Based on the kind of substances to be incorporated, several encapsulation processes have been developed. The literature evidences how the proper choices concerning encapsulation technology, chemical formulations, and process parameter allow tuning the properties and the performances of the obtained microcapsules. Furthermore, the microcapsules based finishing process have been reviewed evidencing how the microcapsules morphology can positively interact with textile substrate allowing an improvement in the durability of the treatment. The application of the chitosan shelled microcapsules was proved to be capable of imparting different functionalities to textile substrates opening possibilities for a new generation of garments with improved performances and with the potential of protecting the user from multiple harms. Lastly, a continuous interest was observed in improving the process and formulation design in order to avoid the usage of toxic substances, therefore, complying with an environmentally friendly approach
    corecore