17 research outputs found

    Influence of omega-3 PUFAs on the metabolism of proanthocyanidins in rats

    Get PDF
    Studies of the bioavailability of proanthocyanidins usually consider them independently of other dietary constituents, while there is a tendency in the field of functional foods towards the combination of different bioactive compounds in a single product. This study examined the long-term effects of ω-3 polyunsaturated fatty acids of marine origin on the metabolic fate of grape proanthocyanidins. For this, female adult Wistar-Kyoto rats were fed (18 weeks) with a standard diet supplemented or not with eicosapentaenoic acid/docosahexaenoic acid (1:1, 16.6 g/kg feed), proanthocyanidin-rich grape seed extract (0.8 g/kg feed) or both. A total of 39 microbial-derived metabolites and 16 conjugated metabolites were detected by HPLC-MS/MS either in urine or in the aqueous fraction of feces. An unexpected significant increase in many proanthocyanidin metabolites in urine and feces was observed in the group supplemented with ω-3 polyunsaturated fatty acids group as compared to the animals fed a standard diet, which contains a small amount of polyphenols. However, proanthocyanidin metabolites in rats given ω-3 polyunsaturated fatty acids and grape seed extract did not significantly differ from those in the group supplemented only with grape seed extract. It was concluded that ω-3 polyunsaturated fatty acids collaborate in the metabolism of polyphenols when present at low doses in the feed matrix, while the capacity of ω-3 polyunsaturated fatty acids to induce microbiota transformations when proanthocyanidins are present at high doses is not relevant compared to that of polyphenols themselves

    A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats

    Get PDF
    Purpose Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). Methods Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. Results A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. Conclusions These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes

    A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats

    No full text
    Purpose Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). Methods Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. Results A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. Conclusions These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes

    Cardiovascular disease-related parameters and Oxidative stress in SHROB rats, a model for metabolic syndrome.

    No full text
    SHROB rats have been suggested as a model for metabolic syndrome (MetS) as a situation prior to the onset of CVD or type-2 diabetes, but information on descriptive biochemical parameters for this model is limited. Here, we extensively evaluate parameters related to CVD and oxidative stress (OS) in SHROB rats. SHROB rats were monitored for 15 weeks and compared to a control group of Wistar rats. Body weight was recorded weekly. At the end of the study, parameters related to CVD and OS were evaluated in plasma, urine and different organs. SHROB rats presented statistically significant differences from Wistar rats in CVD risk factors: total cholesterol, LDL-cholesterol, triglycerides, apoA1, apoB100, abdominal fat, insulin, blood pressure, C-reactive protein, ICAM-1 and PAI-1. In adipose tissue, liver and brain, the endogenous antioxidant systems were activated, yet there was no significant oxidative damage to lipids (MDA) or proteins (carbonylation). We conclude that SHROB rats present significant alterations in parameters related to inflammation, endothelial dysfunction, thrombotic activity, insulin resistance and OS measured in plasma as well as enhanced redox defence systems in vital organs that will be useful as markers of MetS and CVD for nutrition interventions

    Data from: Legume abundance along successional and rainfall gradients in neotropical forests

    No full text
    Data from: Legume Abundance Along Successional And Rainfall Gradients In Neotropical ForestsThis database is the product of the 2ndFOR collaborative research network on secondary forests. The database contains total basal area data (in m2 ha-1) of legume trees (Leguminosae) for 1207 secondary forest plots differing in time since abandonment. The plots belong to different chonosequence studies. For a description of the database, see Gei et al. 2018. Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests. Nature Ecology and Evolution. The file Legume basal area 2ndFOR data.csv contains the following variables: Chronosequence: name of the chronosequence site Age: age of the plot (in years), OG indicates old-growth forest of unknown age LBA: total basal area of legume trees (Leguminosae) of the plot in m2 ha-1 Reference: a citation for the chronosequence study, if available PI/contact person: name(s) of the principal investigator(s) or contact person(s) for the chronosequence study.Legume basal area 2ndFOR data.csv,The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen (N)-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest-inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared to wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural N fixation across tropical forests

    Data from: Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests

    No full text
    This database is the product of the 2ndFOR collaborative research network on secondary forests. The database contains total basal area data (in m2 ha-1) of legume trees (Leguminosae) for 1207 secondary forest plots differing in time since abandonment. The plots belong to different chonosequence studies. For a description of the database, see Gei et al. 2018. Legume Abundance Along Successional And Rainfall Gradients In Neotropical Forests. Nature Ecology and Evolution. The file "Legume basal area 2ndFOR data.csv" contains the following variables: Chronosequence: name of the chronosequence site Age: age of the plot (in years), "OG" indicates old-growth forest of unknown age LBA: total basal area of legume trees (Leguminosae) of the plot in m2 ha-1 Reference: a citation for the chronosequence study, if available PI/contact person: name(s) of the principal investigator(s) or contact person(s) for the chronosequence study

    Data from: Legume abundance along successional and rainfall gradients in neotropical forests

    No full text
    The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen (N)-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest-inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared to wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural N fixation across tropical forests
    corecore