9,971 research outputs found

    Estimation of the gravitational wave polarizations from a non template search

    Get PDF
    Gravitational wave astronomy is just beginning, after the recent success of the four direct detections of binary black hole (BBH) mergers, the first observation from a binary neutron star inspiral and with the expectation of many more events to come. Given the possibility to detect waves from not perfectly modeled astrophysical processes, it is fundamental to be ready to calculate the polarization waveforms in the case of searches using non-template algorithms. In such case, the waveform polarizations are the only quantities that contain direct information about the generating process. We present the performance of a new valuable tool to estimate the inverse solution of gravitational wave transient signals, starting from the analysis of the signal properties of a non-template algorithm that is open to a wider class of gravitational signals not covered by template algorithms. We highlight the contributions to the wave polarization associated with the detector response, the sky localization and the polarization angle of the source. In this paper we present the performances of such method and its implications by using two main classes of transient signals, resembling the limiting case for most simple and complicated morphologies. Performances are encouraging, for the tested waveforms: the correlation between the original and the reconstructed waveforms spans from better than 80% for simple morphologies to better than 50% for complicated ones. For a not-template search this results can be considered satisfactory to reconstruct the astrophysical progenitor

    Pathway to a Compact SASE FEL Device

    Full text link
    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices

    Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies

    Get PDF
    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can determine the direction/time of GW bursts while the IceCube and ANTARES neutrino telescopes can also provide accurate directional information for HEN events. Requiring the consistency between both, totally independent, detection channels shall enable new searches for cosmic events arriving from potential common sources, of which many extra-galactic objects.Comment: 4 pages. To appear in the Proceedings of the 2d Heidelberg Workshop: "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelberg (Germany), January 13-16, 200

    Parental evaluation of a telemonitoring service for children with Type 1 Diabetes

    Get PDF
    Introduction In the past years, we developed a telemonitoring service for young patients affected by Type 1 Diabetes. That service provides data to the clinical staff and offers an important tool to the parents, that are able to oversee in real time their children. The aim of this work was to analyze the parents' perceived usefulness of the service. Methods The service was tested by the parents of 31 children enrolled in a seven-day clinical trial during a summer camp. To study the parents' perception we proposed and analyzed two questionnaires. A baseline questionnaire focused on the daily management and implications of their children's diabetes, while a post-study one measured the perceived benefits of telemonitoring. Questionnaires also included free text comment spaces. Results Analysis of the baseline questionnaires underlined the parents' suffering and fatigue: 51% of total responses showed a negative tendency and the mean value of the perceived quality of life was 64.13 in a 0-100 scale. In the post-study questionnaires about half of the parents believed in a possible improvement adopting telemonitoring. Moreover, the foreseen improvement in quality of life was significant, increasing from 64.13 to 78.39 ( p-value\u2009=\u20090.0001). The analysis of free text comments highlighted an improvement in mood, and parents' commitment was also proved by their willingness to pay for the service (median\u2009=\u2009200\u2009euro/year). Discussion A high number of parents appreciated the telemonitoring service and were confident that it could improve communication with physicians as well as the family's own peace of mind

    Defective B-cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease

    Get PDF
    Background: Chronic granulomatous disease (CGD) is a primary immune deficiency characterized by a defect in reactive oxygen species production. Although the effect of CGD mainly reflects on the phagocytic compartment, B-cell responses are also impaired in patients with CGD. Objective: We sought to investigate how defective gp91phox expression in patients with CGD and CGD carriers might affect the B-cell compartment and maintenance of long-term memory. Methods: We studied the B-cell compartment of patients with CGD in terms of phenotype and ability to produce reactive oxygen species and proliferate on stimuli differently directed to the B-cell receptor and Toll-like receptor 9. We further studied their capacity to maintain long-term memory by measuring cellular and serologic responses to measles. Results: We show that the memory B-cell compartment is impaired among patients with CGD, as indicated by reduced total (CD191CD271) and resting (CD191CD271CD211) memory B cells in parallel to increased naive (CD191CD272IgD1) B-cell frequencies. Data on CGD carriers reveal that such alterations are related to gp91phox expression. Moreover, proliferative capabilities of B cells on selective in vitro stimulation of B-cell receptor or Toll-like receptor 9 pathways were reduced in patients with CGD compared with those seen in age-matched healthy control subjects. Significantly lower measles-specific antibody levels and antibody-secreting cell numbers were also observed, indicating a poor ability to maintain long-term memory in these patients. Conclusion: Altogether, our data suggest that patients with CGD present a defective B-cell compartment in terms of frequencies of memory B cells, response to in vitro stimulation, and maintenance of long-term antigen-specific memory

    Revised Predictions of Neutrino Fluxes from Pulsar Wind Nebulae

    Get PDF
    Several pulsar wind nebulae (PWN) have been detected in the TeV band in the last decade. TeV emission is typically interpreted in a purely leptonic scenario, but this often requires that the magnetic field in the nebula be much lower than the equipartition value, as well as the assumption of an enhanced density of target radiation at IR frequencies. In this work, we consider the possibility that, in addition to the relativistic electrons and positrons, relativistic hadrons are also present in these nebulae. Assuming that some of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼1-100 TeV neutrinos. We use IceCube non-detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in ANTARES and KM3Net

    Multimessenger astrophysics: When gravitational waves meet high energy neutrinos

    No full text
    With recent development of experimental techniques that have opened new windows of observation of the cosmic radiation in all its components, multi-messenger astronomy is entering an exciting era. Many astrophysical sources and cataclysmic cosmic events with burst activity can be plausible sources of concomitant gravitational waves (GWs) and high-energy neutrinos (HENS). Such messengers could reveal hidden and new sources that are not observed by conventional photon astronomy, in particular at high energy. Requiring consistency between GW and HEN detection channels enables new searches and a detection would yield significant additional information about the common source. We present the results of the first search for gravitational wave bursts associated with high energy neutrino triggers, detected by the underwater neutrino telescope ANTARES in its 5 line configuration, during the fifth LIGO science run and first Virgo science run. No evidence for coincident events was found. We place a lower limit on the distance to GW sources associated with every HEN trigger. We are able to rule out the existence of coalescing binary neutron star systems and black hole-neutron star systems up to distances that are typically 5 Mpc and 10 Mpc respectively

    Gyrotrons as High-Frequency Drivers for Undulators and High-Gradient Accelerators

    Get PDF
    Gyrotrons are used as high-power sources of coherent radiation operating in pulsed and CW regimes in many scientific and technological fields. In this paper, we discuss two of their numerous applications. The first one is in gyrotron-powered electromagnetic wigglers and undulators. The second one is for driving high-gradient accelerating structures in compact particle accelerators. The comparison, between the requirements imposed by these two concepts on the radiation sources on one hand and the output parameters of the currently available high-performance gyrotrons on the other hand, show that they match each other to a high degree. We consider this as a manifestation of the feasibility and potential of these concepts. It is believed that after the first successful proof-of-principle experiments they will find more wide usage in the advanced FEL and particle accelerators

    An Innovative and Easy Method for Iron-Doped Titania Synthesis

    Get PDF
    In this work, photocatalytically active titanium oxide nanoparticles were synthesized for the treatment of contaminated water under visible light. Various Ag, Sr and Fe-based synthesis and doping techniques (mainly hydrothermal and sol-gel methods) were performed. Adsorptive and photocatalytic properties were studied by testing in batch mode for the decontaminating a synthetic methylene blue solution (used as a model contaminant) using a simple 13 W LED bulb as the light source. The best material in terms of both activity (high removal kinetics) and simplicity of synthesis was found to be titanium oxide doped with Fe via "solid-state"method. This method enabled the synthesis of titania nanoparticles about 70 nanometers in size with Fe3+ effectively substituting titanium atoms (Ti4+) in the crystalline bulk of titania. The pseudo-first-order kinetic model was found to represent the behavior of the experimental data
    corecore