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Gravitational wave astronomy is just beginning, after the recent success of the four direct detections of
binary black hole (BBH) mergers and the first observation from a binary neutron star inspiral, with the
expectation of many more events to come. Given the possibility to detect waves from not exactly modeled
astrophysical processes, it is fundamental to be ready to calculate the polarization waveforms in the case of
searches using nontemplate algorithms. In such a case, thewaveformpolarizations are the only quantities that
contain direct information about the generating process.We present the performance of a newvaluable tool to
estimate the inverse solution of gravitational wave transient signals, starting from the analysis of the signal
properties of a nontemplate algorithm that is open to a wider class of gravitational signals not covered by
template algorithms. We highlight the contributions to the wave polarization associated with the detector
response, the sky localization, and the polarization angle of the source. In this paper we present the
performances of such a method and its implications by using two main classes of transient signals,
resembling the limiting case for most simple and complicated morphologies. The performances are
encouraging for the tested waveforms: the correlation between the original and the reconstructed waveforms
spans from better than 80% for simple morphologies to better than 50% for complicated ones. For a
nontemplate search these results can be considered satisfactory to reconstruct the astrophysical progenitor.
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I. INTRODUCTION

Gravitational waves (GWs) were predicted by Einstein’s
theory of general relativity in 1916 [1,2]. GWs are dynamic
strains in space-time that travel at the speed of light and are
generated by the nonaxisymmetric acceleration of mass.
The discovery of the binary pulsar system PSR B1913+16
by Hulse and Taylor [3] and subsequent observations of its
energy loss by Taylor and Weisberg [4] demonstrated the
indirect existence of gravitational waves. Such discoveries
led to the identification of the importance of direct
observations of gravitational waves to study relativistic
systems and test general relativity.
The GW community developed a network of ground-

based laser interferometers including the two LIGO and
Virgo detectors [5,6]. LIGO built the pair of detectors in
Hanford, Washington and Livingston, Louisiana, while
Virgo built the one in Pisa, Italy. These three detectors
performed joint scientific runs from 2007 to 2010, putting

interesting upper limits on the detections of GWs [7–10].
Also in Europe, the smaller GEO600 detector [11] has been
running and keeping watch on the GW universe, especially
while its larger siblings were down for upgrades. The
construction of the second-generation interferometers
[12,13] led to the first observing run in September, 2015
for the Advanced LIGO detectors [14]. The Virgo detector
has been upgraded to Advanced Virgo [15] and recently
joined the scientific run with LIGO. Looking ahead, the
KAGRA (Kamioka Gravitational Wave Detector) detector
[16,17] is under construction in an underground site at the
Kamioka mine, in Japan. Recently, another interferometer
has been approved with an Indian location [18].
On September 14, 2015, the two LIGO interferometers

detected themerger of a binary black hole system for the first
time [19–21]. The signal event, named GW150914—which
was simultaneously observed in the two LIGOobservatories
[21] and first noted in a low-latency analysis for generic
gravitational wave transients [22,23]—matched the wave-
form predicted by general relativity of the inspiral and
merger of a pair of back holes and the ringdown of the
resulting single one [24,25]. Three other events were
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detected in December, 2015, January, 2017, and June, 2017,
together with a candidate event in October, 2015; they also
matched waveforms generated by two black holes orbiting
around each other and merging into a single one [26–29].
Advanced Virgo became operational on August 1, 2017 to
join the second scientific run of the Advanced LIGO
detectors. The three-detector network identified gravita-
tional waves from a binary black hole coalescence,
GW170814, improving the sky localization of the source,
and reducing the area of the 90% credible region from
1160 deg2 using only the two LIGO detectors to 60 deg2

using all three detectors [30]. On August 17, 2017 the
Advanced LIGO and Advanced Virgo detectors made their
first observation of a binary neutron star inspiral [31]. The
combination of data from the three interferometers allowed
the most precisely localized gravitational-wave signal yet
and enabled an extensive electromagnetic follow-up cam-
paign that identified a counterpart near the galaxy NGC
4993, consistent with the localization and distance deduced
from gravitational wave data [32]. Using the association
between the luminosity distance directly measured from the
gravitational wave signal and the galaxy NGC 4993 it is
possible also to infer the Hubble constant [33]. These results
affirm the beginning of GW astronomy as well as provide
unprecedented observational insights into the physics of
binary black holes [34], the physics of binary neutron stars,
and the beginning of multimessenger astronomy.
Future events might pose the problem of detecting signals

that are not strictlymodeled like these first detected systems.
Already aware of this issue, the GW community has
developed coherent data analysis techniques which do not
require prior knowledge of the signal and are open to a wide
possible set of waveform shapes. These procedures have
been applied in past analyses, especially in burst searches
[7,35]. We use the word burst to identify all the signals
which have limited time duration (less than seconds) and
also include astrophysical processes for which there is not a
complete model of the expected gravitational wave. For this
reason, in the burst searches we make no particular
assumptions on the waveform. Such coherent methods
[36,37] combine data from multiple detectors and create a
unique list of candidate events for the whole network. A
well-known advantage of coherence is its utility in rejecting
background noise glitches [38,39]. Glitch rejection is
particularly important since it is the limiting factor in the
sensitivity of current burst searches, where a confident
detection of a gravitational wave burst depends critically
on how many glitches pollute the background estimation.
A consistent difference between these methods and

modeled search filter algorithms is that they do not directly
estimate the two waveform polarizations; rather, they recon-
struct the projections of the polarizations for the different
detectors, as done in Refs. [23,40]. In this paper, we present a
completely new algorithm that can serve as a follow-up tool
to reconstruct the original waveform polarizations starting

from the information given by a generic unmodeled pipeline.
As an example, we show the results of the application of this
new algorithm to coherent Waveburst, the same pipeline that
made the first alert of the GW150914 signal [19]. In Sec. II
we introduce the theoretical calculations behind this work,
and how we calculate the signal polarizations starting from
information about the detector response and the source
localization. Section III describes our simulations, and our
results presented in Sec. IV.

II. INVERSE SOLUTION

The projection of the gravitational wave polarizations on
a single interferometer is described by the so-called antenna
patterns, which define the relative interferometer sensitivity
in different directions. Each detector is sensitive to a linear
combination of the two polarizations and has a quadrupolar
antenna pattern. In the notation of Ref. [41], we consider
the interferometer’s arms along the x and y axes, and hence
a generic gravitational wave can be described by the two
polarization components (hþðtÞ, h×ðtÞ) in the x-y plane and
rotated by the polarization angle ψ , while the arrival
direction is given by the spherical coordinates θ and ϕ
relative to the detector’s axes. For convenience we use the
same approach, shown in Ref. [42], to represent detectors
as vectors. The projection on a network of interferometric
detectors is defined by the vector of detector responses,

ξΔðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ; ð1Þ

where each vector component refers to a specific detector k.
The quantity fξΔðtÞgk ¼ ξðtþ ΔkÞ takes into account the
relative difference in arrival time between the detector
location and the Earth’s center as a reference location
(Δk, depending on the θ;ϕ coordinates), while Fþ;× are
the detector antenna patterns, which are related to the relative
orientation of the detector arms with respect to the source
direction and thewave polarization frame. Since the new tool
we are presenting uses the outputs of a standard coherent
GW transient pipeline, i.e., the source direction (θ, ϕ, ψ) and
the detector response vector (ξΔðtÞ), we have to solve the
system in Eq. (1) to compute the polarization patterns.
From the literature [43,44] it is known that it is not

possible to distinguish among the two polarizations with
only two detectors; for this reason, we consider the case of
networks composed of N > 2 detectors. In such a case, we
have for each data sample a redundant number of equations
with respect to the unknown variable. By introducing the
scalar products

Fþ · ξΔðtÞ ¼ jFþj2hþðtÞ þ Fþ · F×h×ðtÞ;
F× · ξΔðtÞ ¼ F× · FþhþðtÞ þ jF×j2h×ðtÞ; ð2Þ

we reduce the problem to two equations in two variables
(hþðtÞ, h×ðtÞ). All the other quantities are given by the
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unmodeled algorithm output: ξΔðtÞ are the detectors
responses, while from the estimation of the source direction
(θ,ϕ,ψ) we can calculate both the antenna patterns
(described by the vectors Fþ;×) and the relative difference
in arrival time between detectors (Δk). The system is easily
solvable; in fact, applying Cramer’s rule, we obtain

(
hðrÞþ ðtÞ ¼ ðFþ·ξΔðtÞÞðjF×j2Þ−ðF×·ξΔðtÞÞðFþ·F×Þ

jFþj2jF×j2−ðFþ·F×Þ2 ;

hðrÞ× ðtÞ ¼ ðF×·ξΔðtÞÞðjFþj2Þ−ðFþ·ξΔðtÞÞðFþ·F×Þ
jFþj2jF×j2−ðFþ·F×Þ2 :

ð3Þ

Equation (3) shows a degeneracy in the regions of the sky
where the denominator of the two equations is near zero.
The authors of Ref. [45] proposed some solutions to avoid
the matrix degeneracy, but we will not consider such an
approach in the present study, since for the tested wave-
forms the number of cases affected by this deficiency is
negligible, and therefore it is not necessary to apply any
regulator.1

To characterize the performance of the new algorithm,
we use the Correlation Factor between the original wave-
form hðiÞ and the reconstructed waveform hðrÞ for each
polarization, defined as

Cþ;× ¼ ðhðrÞþ;×; h
ðiÞ
þ;×Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhðrÞþ;×; h
ðrÞ
þ;×ÞðhðiÞþ;×; h

ðiÞ
þ;×Þ

q ; ð4Þ

where we define with (,) the scalar product between two
waveforms: ða; bÞ ¼ R

aðtÞbðtÞdt. The Correlation Factor
varies from −1 (opposite matching) to 1 (perfect matching).
The errors in the polarization patterns are derived from

the propagation of errors in the estimated quantities: (1)
detector response, (2) sky direction, and (3) polarization
angle. It is fundamental to characterize the relative propa-
gation of the errors to the polarization reconstruction, so we
can understand which one of the just mentioned variables is
predominant among the others. We can disentangle the
various contributions by solving Eq. (3) in various sit-
uations, i.e., by inserting iteratively the real parameters or

the reconstructed ones. We consider three different cases:
(a) reconstructed detector response with true sky location
and true polarization angle, (b) reconstructed detector
response and sky location with true polarization angle,
and (c) reconstructed detector response, sky location, and
polarization angle (see Table I).
We should recall that in this paper we are interested in any

distortion between the original and reconstructed wave-
forms; this is whywe define the Correlation Factor, which is
a suitable quantity for this problem. However, its value can
decrease due to a possible time difference between the signal
and the reconstructedwaveform.An example of this effect is
shown in Fig. 1, where we display the values of C when the
reconstructed waveform is exactly the original one with
different time shifts.We can see that according to the applied
time shifts, thevalues ofCvary in the entire possible range of
½−1; 1�. This tells us that we should disentangle the dis-
tortions of the signal with respect to any time shifts in the
calculation of the Correlation Factor.
We expect a similar behavior in the cases (b) and (c).

In fact, case (b) includes a time shift (introduced by
the different values of Δk) between the original and
reconstructed waveforms. In addition to case (b), case
(c) introduces the rotation of the waveform frame
[h0þ ¼ hþ cosðψÞ þ h× sinðψÞ] which, especially for sinus-
oidal waveforms (see Fig. 1), is equivalent to a shift in time.
Hence, in case (c) we have two time shifts to take into
account: one that is the same as that in case (b), and another
that is due to the difference between the original and
reconstructed polarization angles The interesting challenge
is, do we have a distortion in the signal when we estimate

FIG. 1. Time-shift effect on the Correlation Factor due to rigid
shifts of a sinusoid with a frequency of 153 Hz modulated by a
Gaussian envelope. In the top row, the black curves represent the
original waveform, while the red/green (left/right) curve is the
same waveform after a time shift. In the bottom panel, we show
the values of C calculated by applying a time shift (x axis) to the
original waveform. The red and green points refer to the examples
in the top row.

TABLE I. Sketch of the different cases presented in this paper
to disentangle the various contribution of source errors. Each case
uses reconstructed and/or injected quantities.

Case
Color

Detector
Response

Sky
Localization

Polarization
Angle

(a) reconstructed injected injected
(b) reconstructed reconstructed injected
(c) reconstructed reconstructed reconstructed
(d) reconstructed reconstructed reconstructed

+ time shift

1For 95% of the sky the value of the denominator is greater
than 0.01.
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the wrong sky position? Or, is an effect due to a rigid shift
as in Fig. 1? To answer the question, we include the case
(d), in which we reconstruct the detector response, the sky
localization, and also the polarization angle [as in case (c)]
and then we add a time shift on hþ and h×. The applied time
shift is the maximum value of the cross-correlation function
of time in which we calculate the cross-correlation between
the injected and reconstructed polarization patterns. Hence,
we estimate the possible shift among the two waveforms
and we calculate the C value after correcting the recon-
structed polarizations with this time shift. In this way we
can focus only on possible signal distortions.

III. MONTE CARLO SIMULATIONS

As a starting point for our tool, we take the results
obtained by the GW transient signal algorithm in use by the
LIGO and Virgo Collaborations called coherent Waveburst
[22,23]. It is an algorithm to measure energy excesses over
the detector noise in the time-frequency domain and
combine these excesses coherently among the various
detectors. This is performed by introducing a maximum
likelihood approach to define the ratio of the probability of
having a signal in the data over the probability of having
only noise. This does not need a particular assumption on
the expected waveform, making it open to a wide class of
transient signals.
The algorithm has recently improved in preparation for

the advanced detector era. The main improvement concerns
a new method for the estimation of the event parameters
which considers assumptions on the polarization state
(circular, linear, elliptical, etc.) [23]. This improvement
is particularly suited for this work because, despite the fact
that it does not directly calculate directly the two plus and
cross polarizations, it is implicitly connected to them
through the calculation of the polarization state. The
algorithm performances on sky localization and detector
response were reported in the previous results [43,44].
For this work we contemplate a network composed of

three interferometers: the two LIGO detectors (L1 in
Livingston and H1 in Hanford) and the Virgo detector
(Cascina, Italy), with simulated Gaussian detector noise
considering the amplitude spectral density at the design
sensitivity [46,47]. Even though most of the noise back-
ground in detectors is Gaussian, random instrumental
artifacts can make the background far from Gaussian
[7,35,48]. The use of Gaussian noise is just the starting
point to verify the performance of this new tool. We expect
that glitches would affect only the detection confidence and
not the reconstruction of the waveforms, as explained in the
case of the sky localization [44]. We will check the real
behavior of noise when we handle the data analysis of the
three advanced detectors.
We inject the so-called sine-Gaussian and

WhiteNoiseBurst waveforms, which are among the stan-
dard tested waveforms for burst searches, representing the

limiting case for the most simple and complicated mor-
phologies, respectively. The former are defined as follows:

hþðtÞ ¼ h
1þ cos2ðιÞ

2
sinð2πtf0Þ expð−t2=τ2Þ

h×ðtÞ ¼ h cosðιÞ cosð2πtf0Þ expð−t2=τ2Þ ð5Þ

where f0 is the central frequency, τ is related to the
waveform quality factor Q ¼ ffiffiffi

2
p

πf0τ, and the inclination
angle ι is uniformly distributed. For this study we take into
account three quality factorsQ ¼ 3, 9, 100 and three central
frequencies f0 ¼ 235, 554, 1053 Hz, with source coordi-
nates uniformly distributed in the sky.WhiteNoiseBursts are
frequency-band-limited white noise with a time Gaussian
envelope. They have no particular polarization, while sine-
Gaussians have elliptical polarization. To distinguish the
various sources of error, we compute the Correlation Factor
[Eq. (4)] for the different cases (a), (b), (c), and (d). To
characterize the algorithm’s performance, we inject uni-
formly in the sky at discrete values of the network signal-to-
noise ratio (SNR) (10, 12, 15, 20, 25, 30, and 35), where the
network SNR is defined as the square sum of the ratio of the
reconstructed waveform in the frequency domain ð ~hþ; ~h×Þ
and the amplitude spectral density SkðfÞ of each detector

k: SNR2 ¼ P
k

R ~h2þþ ~h2×
SkðfÞ df.

IV. RESULTS

The aim of the new algorithm is the reconstruction of
both polarizations (þ,×) starting from the results (detector
responses, sky localization) of a standard GW transient
algorithm. We started the study by disentangling the
contribution of detector response and sky localization on
the estimation of the polarizations. In Fig. 2 we show an
example of the Cþ distribution [Eq. (4)] for an elliptical
sine-Gaussian centered at 235 Hz and Q ¼ 9 for all of the
injected SNR. In case (a), where we have reconstructed
only the detector response, the distribution of the
Correlation Factor is near 1, confirming that the detector
response estimation is in agreement with the expected
waveforms for the complete set of SNRs. In case (b), where
we reconstruct both the detector response and the sky
positions, a new population appears, centered at 0.
However, for case (c), where in addition to the information
in case (b) we also reconstruct the polarization angle, there
are three main populations centered at −1, 0, 1, respec-
tively. The appearance of these new peaks in cases (b) and
(c) can be due to two different effects: signal distortion and/
or time shift. As we have shown in Fig. 1, introducing time
shifts lowers the value of the Correlation Factor. When we
look at case (d) (where we avoid a possible time shift by
bringing the (c) waveform back to the right time), the only
remaining distribution is around 1, similar to what happens
in case (a). This answers the question we posed in the
previous section: does a wrong sky localization create
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distortion of the original signal? Results show that the main
effect of estimating the wrong sky position is the introduc-
tion of a time shift between the estimated polarization and
the original one, but such distortions on thewaveform shape
are negligible. The fact that for case (b) we do not have so
many values of the Correlation Factor less than 0 means that
the errors from the sky localization cause a time shift to the
reconstructed waveform that is not bigger than a certain
value. Thinking in terms of phase shift, it is not bigger than a
90 degrees shift.2 To confirm this last sentence, we compare
the results related to case (b) considering different injection
SNRs (Fig. 3) and a sine-Gaussianwith different frequencies
and the same SNR (Fig. 4).
Figure 3, where we reported three different cases

(SNR ¼ 12, 20, and 35), shows that the widths of the
peaks are not different in the three cases. This verifies that
the peak at 0 is not related to the SNR, but it gives a hint
that it could be related to the sample rate. However, the fact
that the height of the peaks at 0 and at 1 changes for
different SNRs tells us that the sky reconstruction is better
for high SNR (as expected). The higher the SNR, the
smaller the number of events affected by a wrong sky

localization, which produces a time shift between the
injected and reconstructed waveform polarizations, result-
ing in low values of the Correlation Factor.
In Fig. 4 we show the performances for waveforms at

central frequencies of 554 and 1053 Hz and compared these
with the one at 253 Hz already reported in Fig. 2. We can
see that the distribution of the results is slightly different; in
particular, when the frequency increases, the distribution is
no longer exhibits the peak at 0, but the values of the
Correlation Factor are more spread out in the possible range
[−1, 1]. The reason is that for this work we adopted the
standard sine-Gaussian definition [7,35], which groups
waveforms with the same quality factor Q ¼ ffiffiffi

2
p

πf0τ into
the same set [see Eq. (5)]. The quantity Q is mainly related
to the number of cycles that characterize the sine-Gaussian.
Therefore, in the same set, given that we have equal cycles
but different frequencies, the time duration of the wave-
forms is inversely proportional to the frequency. Increasing
the number of cycles allows the possibility to explore more
phase shifts between the injected and the reconstructed
waveforms, when we apply a generic time shift between the
two waveforms. The time shift between injected and
reconstructed waveforms depends only on the sky location
and—even if the reconstructed sky localization is better
when the frequency increases [43,49]—such improvement

FIG. 2. Correlation Factor of the plus polarization for injections of a sine-Gaussian with a central frequency of 253 Hz and Q ¼ 9
uniformly distributed in the sky and for different values of SNR. From left to right, and top to bottom: case (a), (b), (c), and (d).

2For sinusoidal waveforms, a generic time shift is equivalent to
a phase shift.
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is not enough to contrast the effect of having a different
number of cycles coming from waveforms at higher
frequencies. Increasing the number of cycles allows the
possibility to explore more phase shifts between the
injected and the reconstructed waveforms, which shapes
the distribution of values of the Correlation Factor.
However, for case (c) the reconstructed polarization

angle can differ from the original one in the complete
range between 0 and 360 degrees, and this is the reason for
the peak at −1. The accumulation point at −1 is always
present, for each SNR and frequency, as we can see in
Fig. 5. To confirm this we tried the case of injected sky
position and reconstructed polarization angle [we call this
case (e)], and we show the result for the sine-Gaussian at a
central frequency of 235 Hz and Q ¼ 9 in Fig. 6 (but for
other waveforms, results are similar). Figure 6 shows that
the peak at −1 is still present, validating the fact that it is

related to the wrong estimation of the polarization angle
(moreover, the peak at 0 has disappeared).
In Fig. 7(a) we estimate, from the distribution of Fig. 2,

the median value. The shaded regions represent the 30–
70% percentile of the Correlation Factor. In Fig. 7(b) we
have the same results for a WhiteNoiseBurst. We see that
for each case [from (a) to (d)] a waveform like a sine-
Gaussian shows in general a median nearer to the optimal
value of 1 than a waveform like a WhiteNoiseBurst. These
waveforms show a time-frequency representation which
involves a greater number of pixels. Having more pixels
naturally increases the noise contribution to the waveform
reconstruction. This easily explains the reason why per-
formances for a sine-Gaussian are better than those for a
WhiteNoiseBurst, given that it is possible to characterize
the former with less time-frequency pixels. Indeed, for the
sine-Gaussian case, results are independent of the tested

FIG. 3. Correlation Factor of the plus polarization for case (b) for injections of a sine-Gaussian with a central frequency of 253 Hz and
Q ¼ 9 uniformly distributed in the sky and selected values of SNR. From left to right: SNR ¼ 12, 20, 35.

FIG. 4. Correlation Factor of the plus polarization for case (b) for injections of a sine-Gaussian withQ ¼ 9 uniformly distributed in the
sky and selected central frequencies. From left to right, the central frequencies are 235, 554, and 1053 Hz.

FIG. 5. Correlation Factor of the plus polarization for case (c) for injections of a sine-Gaussian withQ ¼ 9 uniformly distributed in the
sky and selected central frequencies. From left to right, the central frequencies are 235, 554, and 1053 Hz.
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SNR. Since a decrease in the SNR values produces a
contamination of the noise in the performances, we chose
a network SNR ¼ 1 0 (detector SNR ≈ 10=

ffiffiffi
3

p
< 6) as a

reasonable threshold for a candidate event, as explained and
done before for searches in Ref. [20].

A. Transient signals

In this paper we are interested in the reconstruction of the
waveform shape with the aim to estimate the characteristics
of the generating source from the waveform itself. Given
this purpose, we want to focus on eventual signal dis-
tortions in the reconstructed polarization patterns. Since in
a real analysis we do not know the true quantities, we
should focus on case (c). However, as already discussed
and shown in Fig. 2, for this case the Correlation Factor C
describes the effects of both signal distortion and time shift.
Hence, in the following we consider the case (d) because it
is connected only to the distortion and not to any eventual
time shift applied to the signal.
In Fig. 8(a) we show the comparison of a sine-Gaussian

with the same Q ¼ 9 but at different central frequencies.
We can see that performances are better for the plus
polarization (þ). This is probably because for most of
the injection the (þ) polarization has higher energy than the
cross one ð×Þ. Indeed, there are negligible differences for
the ð×Þ polarization among the three frequencies, but for
the (þ) polarization we can see that performances are better
for lower frequencies, probably due to the fact that these
oscillations are less separated in time. This is also con-
firmed in Fig. 8(b) where we show a comparison with a
sine-Gaussian with the same central frequency but different
Q. We see that when Q increases, performances are better,
because the waveform’s bandwidth is narrow and the time-
frequency representation involves less pixels.
Similar results for a WhiteNoiseBurst are shown in

Fig. 8(c), where the performances are better for lower fre-
quencies. Moreover, for these waveforms the performances

are slightly worse with respect to a sine-Gaussian. Indeed,
the WhiteNoiseBurst signals are more widespread in the
time-frequency domain than the sine-Gaussian, which
makes it more difficult to accurately reconstruct the

FIG. 6. Correlation Factor of the plus polarization for case (c)
for injections of a sine-Gaussian with a central frequency of
253 Hz and Q ¼ 9 uniformly distributed in the sky and all of the
tested SNRs.

FIG. 7. Median (lines) and 30–70% percentile (colored regions)
of the Correlation Factor for the plus (top) and cross (bottom)
polarization for injections uniformly distributed in the sky as a
function of the injected SNR. Colors refer to cases (a) (red), (b)
(green), (c) (orange), and (d) (blue).
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complete waveform. As already shown [Fig. 7(b)], for these
waveforms the contribution to the errors coming from the
detector response estimation is more important than the
sine-Gaussian.

B. Compact binary coalescence

For completeness, we also test the algorithm on a set of
signals coming from the coalescence of binary black hole
systems. The first detections of gravitational waves were
generated by the merger of two black holes, which are the
most cataclysmic events in nature. In such systems two
black holes combine to form a single one, emitting a
strong gravitational wave. In our simulations we consider
binary black hole systems with single masses between 15
and 25 solar masses and uniform spin distribution
between 0 and 0.9. These are the same waveforms
used in Ref. [44], where the Coherent WaveBurst perfor-
mances on sky localization have already been reported.
Waveforms are injected up to 4 Gpc, using a uniform
distribution in volume. We do consider any cosmological
evolution, so in the previous values we are referring to
masses in the source frames and luminosity distance. The
reconstructed events are collected in bins of network SNR,
and each bin has a width equal to 2. To be homogeneous
with the results of the other waveforms we consider
the SNR range 8–38. Results from these tests are shown
in Fig. 7(c). The results are similar to the case of
WhiteNoiseBursts in Fig. 7(b). Indeed the signals belong-
ing to these two classes involve a greater number of pixels
in the time-frequency domain. This increases the noise
contribution to the waveform estimation, which makes it
more difficult to accurately reconstruct the complete
waveform.

V. CONCLUSION

We have tested a new algorithm for estimating the
inverse solution of gravitational wave transient signals
from the information given by a nontemplate search, and
reconstructed the original waveform polarization. This
approach is the first attempt to use and verify the accuracy
of the tool. Assuming Gaussian noise and that the detectors
operate at the design sensitivity, our results show a reliable
reconstruction of both (þ) and ð×Þ polarizations, even for
low injected values of SNR.
Through the disentanglement of the various error con-

tributions, we have shown that the main effect is due to the
detector response. In fact, the correction caused by the sky
position is mainly a time shift of the signal proper time, but
no significant distortion appears in the original waveform,
as seen in Fig. 2.
We are working to further improve and refine the

reconstruction by reducing the contribution of the noise
in the detector response estimation. In future works, we
hope to verify whether real detector noise gives comparable
results and to study the effect of the matrix deficiency, for
instance, by applying the approach proposed in Ref. [45].
This tool does not rely on a specific pipeline; hence, it can
be applied to any algorithm that provides information about
the detector response and sky location. It would be

FIG. 8. Median (lines) and 30–70%percentile (colored regions) of
the Correlation Factor for the plus (top) and cross (bottom) polari-
zation for different signals for the (d) case. The y axis shows the
Correlation Factor value for which the 50% (lines) and 30–70% per-
centiles of the recovered waveforms have a bigger cross correlation.
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interesting to apply this approach to events detected by
Advanced LIGO and Virgo in the future observational runs.
For events detected with template searches, it would be
straightforward to compare the polarizations obtained with
this method with the ones given by the template. This
would allow to check the performances of this approach
with the best matching, but it could also give hints on
possible variations of the real signal from the template
itself. For events detected with unmodeled algorithms,
reconstructing the polarizations would be the first step to

understanding the generating process, other than the
astrophysical progenitor.
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