254 research outputs found
FORCE-TORQUE MEASUREMENT SYSTEM FOR FRACTURE SURGERY
One of the more difficult tasks in surgery is to apply the optimal instrument forces and torques necessary to conduct an operation without damaging the tissue of the patient. This is especially problematic in surgical robotics, where force-feedback is totally eliminated. Thus, force sensing instruments emerge as a critical need for improving safety and surgical outcome. We propose a new measurement system that can be used in real fracture surgeries to generate quantitative knowledge of forces/torques applied by surgeon on tissues.We instrumented a periosteal elevator with a 6-DOF load-cell in order to measure forces/torques applied by the surgeons on live tissues during fracture surgeries. Acquisition software was developed in LabView to acquire force/torque data together with synchronised visual information (USB camera) of the tip interacting with the tissue, and surgeon voice recording (microphone) describing the actual procedure. Measurement system and surgical protocol were designed according to patient safety and sterilisation standards.The developed technology was tested in a pilot study during real orthopaedic surgery (consisting of removing a metal plate from the femur shaft of a patient) resulting reliable and usable. As demonstrated by subsequent data analysis, coupling force/torque data with video and audio information produced quantitative knowledge of forces/torques applied by the surgeon during the surgery. The outlined approach will be used to perform intensive force measurements during orthopaedic surgeries. The generated quantitative knowledge will be used to design a force controller and optimised actuators for a robot-assisted fracture surgery system under development at the Bristol Robotics Laboratory
Towards Robot-Assisted Fracture Surgery For Intra-Articular Joint Fractures
Background Treating fractures is expensive and includes a long post-operative care. Intra-articular fractures are often treated with open surgery that require massive soft tissue incisions, long healing time and are often accompanied by deep wound infections. Minimally invasive surgery (MIS) is an alternative to this but when performed by surgeons and supported by X-rays does not achieve the required accuracy of surgical treatment. Methods Functional and non-functional requirements of the system were established by conducting interviews with orthopaedic surgeons and attending fracture surgeries at Bristol Royal Infirmary to gain first-hand experience of the complexities involved. A robot-assisted fracture system (RAFS) has been designed and built for a distal femur fracture but can generally serve as a platform for other fracture types. Results The RAFS system has been tested in BRL and the individual robots can achieve the required level of reduction positional accuracy (less than 1mm translational and 5 degrees of rotational accuracy). The system can simultaneously move two fragments. The positioning tests have been made on Sawbones. Conclusions The proposed approach is providing an optimal solution by merging the fracture reduction knowledge of the orthopaedic surgeon and the robotic system's precision in 3D
Image-Based Robotic System for Enhanced Minimally Invasive Intra-Articular Fracture Surgeries
Abstract: Robotic assistance can bring significant improvements to orthopedic fracture surgery: facilitate more accurate fracture fragment repositioning without open access and obviate problems related to the current minimally invasive fracture surgery techniques by providing a better clinical outcome, reduced recovery time, and health-related costs. This paper presents a new design of the robot-assisted fracture surgery (RAFS) system developed at Bristol Robotics Laboratory, featuring a new robotic architecture, and real-time 3D imaging of the fractured anatomy. The technology presented in this paper focuses on distal femur fractures, but can be adapted to the larger domain of fracture surgeries, improving the state-of-the-art in robot assistance in orthopedics. To demonstrate the enhanced performance of the RAFS system, 10 reductions of a distal femur fracture are performed using the system on a bone model. The experimental results clearly demonstrate the accuracy, effectiveness, and safety of the new RAFS system. The system allows the surgeon to precisely reduce the fractures with a reduction accuracy of 1.15 mm and 1.3°, meeting the clinical requirements for this procedure
RAFS: A computer-assisted robotic system for minimally invasive joint fracture surgery, based on pre- and intra-operative imaging
The integration of minimally invasive robotic assistance and image-guidance can have positive impact on joint fracture surgery, providing a better clinical outcome with respect to the current open procedure. In this paper, a new design of the RAFS surgical system is presented. The redesign of the robotic system and its integration with a novel 3D navigation system through a new clinical workflow, overcomes the drawbacks of the earlier prototype. This makes the RAFS surgical system more suitable to clinical scenarios in the operating theatre. System accuracy and effectiveness are successfully demonstrated through laboratory trials and preliminary cadaveric trials. The experimental results demonstrate that the system allows the surgeon to reduce a 2-fragment distal femur fracture in a cadaveric specimen, with a reduction accuracy of up to 0.85 mm and 2.2°. Preliminary cadaveric trials also provided a positive and favorable outcome pointing to the usability and safety of the RAFS system in the operating theatre, potentially enhancing the capacity of joint fracture surgeries
Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery
Reduction of fractures in the minimally invasive (MI) manner can avoid risks associated with open fracture surgery. The MI approach requires specialized tools called percutaneous fragment manipulation devices (PFMD) to enable surgeons to safely grasp and manipulate fragments. PFMDs developed for long-bone manipulation are not suitable for intra-articular fractures where small bone fragments are involved. With this study, we offer a solution to potentially move the current fracture management practice closer to the use of a MI approach. We investigate the design and testing of a new PFMD design for manual as well as robot-assisted manipulation of small bone fragments. This new PFMD design is simulated using FEA in three loading scenarios (force/torque: 0 N/2.6 Nm, 75.7 N/3.5 N, 147 N/6.8 Nm) assessing structural properties, breaking points, and maximum bending deformations. The PFMD is tested in a laboratory setting on Sawbones models (0 N/2.6 Nm), and on ex-vivo swine samples (F = 80 N ± 8 N, F = 150 ± 15 N). A commercial optical tracking system was used for measuring PFMD deformations under external loading and the results were verified with an electromagnetic tracking system. The average error difference between the tracking systems was 0.5 mm, being within their accuracy limits. Final results from reduction maneuvers performed both manually and with the robot assistance are obtained from 7 human cadavers with reduction forces in the range of (F = 80 N ± 8 N, F = 150 ± 15 N, respectively). The results show that structurally, the system performs as predicted by the simulation results. The PFMD did not break during ex-vivo and cadaveric trials. Simulation, laboratory, and cadaveric tests produced similar results regarding the PFMD bending. Specifically, for forces applied perpendicularly to the axis of the PFMD of 80 N ± 8 N deformations of 2.8, 2.97, and 3.06 mm are measured on the PFMD, while forces of 150 ± 15 N produced deformations of 5.8, 4.44, and 5.19 mm. This study has demonstrated that the proposed PFMD undergoes predictable deformations under typical bone manipulation loads. Testing of the device on human cadavers proved that these deformations do not affect the anatomic reduction quality. The PFMD is, therefore, suitable to reliably achieve and maintain fracture reductions, and to, consequently, allow external fracture fixation
Ordered structures in rotating ultracold Bose gases
The characterization of small samples of cold bosonic atoms in rotating
microtraps has recently attracted increasing interest due to the possibility to
deal with a few number of particles per site in optical lattices. We analyze
the evolution of ground state structures as the rotational frequency
increases. Various kinds of ordered structures are observed. For atoms,
the standard scenario, valid for large sytems, is absent, and only gradually
recovered as increases. The vortex contribution to the total angular
momentum as a function of ceases to be an increasing function of
, as observed in experiments of Chevy {\it et al.} (Phys. Rev. Lett.
85, 2223 (2000)). Instead, for small , it exhibits a sequence of peaks
showing wide minima at the values of , where no vortices appear.Comment: 35 pages, 17 figure
Vortex nucleation as a case study of symmetry breaking in quantum systems
Mean-field methods are a very powerful tool for investigating weakly
interacting many-body systems in many branches of physics. In particular, they
describe with excellent accuracy trapped Bose-Einstein condensates. A generic,
but difficult question concerns the relation between the symmetry properties of
the true many-body state and its mean-field approximation. Here, we address
this question by considering, theoretically, vortex nucleation in a rotating
Bose-Einstein condensate. A slow sweep of the rotation frequency changes the
state of the system from being at rest to the one containing one vortex. Within
the mean-field framework, the jump in symmetry occurs through a turbulent phase
around a certain critical frequency. The exact many-body ground state at the
critical frequency exhibits strong correlations and entanglement. We believe
that this constitutes a paradigm example of symmetry breaking in - or change of
the order parameter of - quantum many-body systems in the course of adiabatic
evolution.Comment: Minor change
Clonal haematopoiesis is not prevalent in survivors of childhood cancer
This project was funded by the Wellcome Trust Sanger Institute (grant number WT098051). G.S.V. is funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA). F.F. is funded by Compagnia di San Paolo Grant: “Le cellule staminali del sangue nei guariti di leucemia” Codice SIME 2013-0958 (codice ROL 4201). I.V is funded by the Spanish Ministerio de Economía y Competitividad, Programa Ramón y Cajal
- …