929 research outputs found

    The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies.

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations

    The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations

    Assessing Organizational Readiness for Depression Care Quality Improvement: Relative Commitment and Implementation Capability

    Get PDF
    Background: Depression is a major cause of morbidity and cost in primary care patient populations. Successful depression improvement models, however, are complex. Based on organizational readiness theory, a practice’s commitment to change and its capability to carry out the change are both important predictors of initiating improvement. We empirically explored the links between relative commitment (i.e., the intention to move forward within the following year) and implementation capability. Methods: The DIAMOND initiative administered organizational surveys to medical and quality improvement leaders from each of 83 primary care practices in Minnesota. Surveys preceded initiation of activities directed at implementation of a collaborative care model for improving depression care. To assess implementation capability, we developed composites of survey items for five types of organizational factors postulated to be collaborative care barriers and facilitators. To assess relative commitment for each practice, we averaged leader ratings on an identical survey question assessing practice priorities. We used multivariable regression analyses to assess the extent to which implementation capability predicted relative commitment. We explored whether relative commitment or implementation capability measures were associated with earlier initiation of DIAMOND improvements. Results: All five implementation capability measures independently predicted practice leaders’ relative commitment to improving depression care in the following year. These included the following: quality improvement culture and attitudes (p = 0.003), depression culture and attitudes (p \u3c0.001), prior depression quality improvement activities (p \u3c0.001), advanced access and tracking capabilities (p = 0.03), and depression collaborative care features in place (p = 0.03). Higher relative commitment (p = 0.002) and prior depression quality improvement activities appeared to be associated with earlier participation in the DIAMOND initiative. Conclusions: The study supports the concept of organizational readiness to improve quality of care and the use of practice leader surveys to assess it. Practice leaders’ relative commitment to depression care improvement may be a useful measure of the likelihood that a practice is ready to initiate evidence-based depression care changes. A comprehensive organizational assessment of implementation capability for depression care improvement may identify specific barriers or facilitators to readiness that require targeted attention from implementers

    Wie verlässlich ist die Bestimmung von Procalcitonin als Entzündungsmarker auf Intensivstation?

    Get PDF
    The role of procalcitonin (PCT) plasma levels as a diagnostic tool for intensive care patients has been intensively investigated during the past years. In particular for recognition of bacterial infections, PCT levels have been shown to be superior to other clinical and biochemical markers. Furthermore, some very recent studies show that in patients with lower respiratory tract infections PCT guided antibiotic therapy reduces antibiotic use and thereby may also reduce duration of stay of patients in hospital and thus cut hospitalisation costs. However, various studies indicate that the value of PCT as a prognostic marker is limited because of false positive or negative values. Despite these limitations PCT plasma levels are currently measured in intensive care units. The present study summarises the possible clinical uses of this lab marker as a diagnostic tool for the assessment of critically of ill patients

    Prognostic value of procalcitonin in Legionella pneumonia

    Get PDF
    The diagnostic reliability and prognostic implications of procalcitonin (PCT) (ng/ml) on admission in patients with community-acquired pneumonia (CAP) due to Legionella pneumophila are unknown. We retrospectively analysed PCT values in 29 patients with microbiologically proven Legionella-CAP admitted to the University Hospital Basel, Switzerland, between 2002 and 2007 and compared them to other markers of infection, namely, C-reactive protein (CRP) (mg/l) and leukocyte count (109/l), and two prognostic severity assessment scores (PSI and CURB65). Laboratory analysis demonstrated that PCT values on admission were >0.1in over 93%, >0.25 in over 86%, and >0.5 in over 82% of patients with Legionella-CAP. Patients with adverse medical outcomes (59%, n = 17) including need for ICU admission (55%, n = 16) and/or inhospital mortality (14%, n = 4) had significantly higher median PCT values on admission (4.27 [IQR 2.46-9.48] vs 0.97 [IQR 0.29-2.44], p = 0.01), while the PSI (124 [IQR 81-147] vs 94 [IQR 75-116], p = 0.19), the CURB65 (2 [IQR 1-2] vs 1 [1-3], p = 0.47), CRP values (282 [IQR 218-343], p = 0.28 vs 201 [IQR 147-279], p = 0.28), and leukocyte counts (12 [IQR 10-21] vs 12 [IQR 9-15], p = 0.58) were similar. In receiver operating curves, PCT concentrations on admission had a higher prognostic accuracy to predict adverse outcomes (AUC 0.78 [95%CI 0.61-96]) as compared to the PSI (0.64 [95%CI 0.43-0.86], p = 0.23), the CURB65 (0.58 [95%CI 0.36-0.79], p = 0.21), CRP (0.61 [95%CI 0.39-0.84], p = 0.19), and leukocyte count (0.57 [95%CI 0.35-0.78], p = 0.12). Kaplan-Meier curves demonstrated that patients with initial PCT values above the optimal cut-off of 1.5 had a significantly higher risk of death and/or ICU admission (log rank p = 0.003) during the hospital stay. In patients with CAP due to Legionella, PCT levels on admission might be an interesting predictor for adverse medical outcome

    The properties of the star-forming interstellar medium at z=0.84-2.23 from HiZELS: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine H�-selected galaxies at z =0.84–2.23 drawn from the HiZELS narrow-band survey. These galaxies have star-formation rates of 1–27M⊙ yr−1 and are therefore representative of the typical high-redshift star-forming population. Our �kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionised gas is in large, rotating disks. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities.We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor 2.5 between z =2 and z =0, whilst the rest-frame B-band luminosity has decreased by a factor �6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B-band of �(M/ LB) / (M/ LB)z=0 �3.5 between z =1.5 and z =0, with most of the evolution occuring below z =1. We also use the spatial variation of [Nii] /H� to show that the metallicity of the ionised gas in these galaxies declines monotonically with galactocentric radius, with an average �log(O/H) /�R=−0.027±0.005 dex kpc−1. This gradient is consistent with predictions for high-redshift disk galaxies from cosmologically based hydrodynamic simulations. Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshif

    Nature of the metal-nonmetal transition in metal-ammonia solutions. I. Solvated electrons at low metal concentrations

    Full text link
    Using a theory of polarizable fluids, we extend a variational treatment of an excess electron to the many-electron case corresponding to finite metal concentrations in metal-ammonia solutions (MAS). We evaluate dielectric, optical, and thermodynamical properties of MAS at low metal concentrations. Our semi-analytical calculations based on a mean-spherical approximation correlate well with the experimental data on the concentration and the temperature dependencies of the dielectric constant and the optical absorption spectrum. The properties are found to be mainly determined by the induced dipolar interactions between localized solvated electrons, which result in the two main effects: the dispersion attractions between the electrons and a sharp increase in the static dielectric constant of the solution. The first effect provides a classical phase separation for the light alkali metal solutes (Li, Na, K) below a critical temperature. The second effect leads to a dielectric instability, i.e., polarization catastrophe, which is the onset of metallization. The locus of the calculated critical concentrations is in a good agreement with the experimental phase diagram of Na-NH3 solutions. The proposed mechanism of the metal-nonmetal transition is quite general and may occur in systems involving self-trapped quantum quasiparticles.Comment: 13 figures, 42 page

    The Effects of Patient-Centered Depression Care on Patient Satisfaction and Depression Remission

    Get PDF
    Background: While health systems are striving for patient-centered care, they have little evidence to guide them on how to engage patients in their care, or how this may affect patient experiences and outcomes. Objective: To explore which specific patient-centered aspects of care were best associated with depression improvement and care satisfaction. Methods: Design - observational. Setting - 83 primary care clinics across Minnesota. Subjects - Primary care patients with new prescriptions for antidepressants for depression were recruited from 2007 to 2009. Outcome measures - Patients completed phone surveys regarding demographics and self-rated health status and depression severity at baseline and 6 months. Patient centeredness was assessed via a modified version of the Patient Assessment of Chronic Illness Care. Differences in rates of remission and satisfaction between positive and negative responses for each care process were evaluated using chi-square tests. Results: At 6 months, 37% of 792 patients ages 18–88 achieved depression remission, and 79% rated their care as good-to-excellent. Soliciting patient preferences for care and questions or concerns, providing treatment plans, utilizing depression scales and asking about suicide risk were patient centered measures that were positively associated with depression remission in the unadjusted model; these associations were mildly weakened after adjustment for depression severity and health status. Nearly all measures of patient centeredness were positively associated with care ratings. Conclusion: The patient centeredness of care influences how patients experience and rate their care. This study identified specific actions providers can take to improve patient satisfaction and depression outcomes

    Dysbiosis in a canine model of human fistulizing Crohn's disease

    Get PDF
    Crohn's disease (CD) is a chronic immune-mediated inflammatory condition caused by the loss of mucosal tolerance toward the commensal microbiota. On average, 29.5% and 42.7% CD patients experience perianal complications at 10 and 20 y after diagnosis, respectively. Perianal CD (pCD) result in high disease burden, diminished quality of life, and elevated health-care costs. Overall pCD are predictors of poor long-term outcomes. Animal models of gut inflammation have failed to fully recapitulate the human manifestations of fistulizing CD. Here, we evaluated dogs with spontaneous canine anal furunculosis (CAF), a disease with clinical similarities to pCD, as a surrogate model for understanding the microbial contribution of human pCD pathophysiology. By comparing the gut microbiomes between dogs suffering from CAF (CAF dogs) and healthy dogs, we show CAF-dog microbiomes are either very dissimilar (dysbiotic) or similar (healthy-like), yet unique, to healthy dog's microbiomes. Compared to healthy or healthy-like CAF microbiomes, dysbiotic CAF microbiomes showed an increased abundance of Bacteroides vulgatus and Escherichia coli and a decreased abundance of Megamonas species and Prevotella copri. Our results mirror what have been reported in previous microbiome studies of patients with CD; particularly, CAF dogs exhibited two distinct microbiome composition: dysbiotic and healthy-like, with determinant bacterial taxa such as E. coli and P. copri that overlap what it has been found on their human counterpart. Thus, our results support the use of CAF dogs as a surrogate model to advance our understanding of microbial dynamics in pCD

    High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence

    Get PDF
    Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor–Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence
    • …
    corecore