29 research outputs found
Human gait identification using persistent homology
This paper shows an image/video application using topological invariants for human gait recognition. Using a background subtraction approach, a stack of silhouettes is extracted from a subsequence and glued through their gravity centers, forming a 3D digital image I. From this 3D representation, the border simplicial complex ∂ K(I) is obtained. We order the triangles of ∂ K(I) obtaining a sequence of subcomplexes of ∂ K(I). The corresponding filtration F captures relations among the parts of the human body when walking. Finally, a topological gait signature is extracted from the persistence barcode according to F. In this work we obtain 98.5% correct classification rates on CASIA-B database
Benchmark RGB-D Gait Datasets: A Systematic Review
Human motion analysis has proven to be a great source of information for a wide range of applications. Several approaches for a detailed and accurate motion analysis have been proposed in the literature, as well as an almost proportional number of dedicated datasets. The relatively recent arrival of depth sensors contributed to an increasing interest in this research area and also to the emergence of a new type of motion datasets. This work focuses on a systematic review of publicly available depth-based datasets, encompassing human gait data which is used for person recognition and/or classification purposes. We have conducted this systematic review using the Scopus database. The herein presented survey, which to the best of our knowledge is the first one dedicated to this type of datasets, is intended to inform and aid researchers on the selection of the most suitable datasets to develop, test and compare their algorithms. (c) Springer Nature Switzerland AG 2019
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
The Usability of E-learning Platforms in Higher Education: A Systematic Mapping Study
The use of e-learning in higher education has increased significantly in recent years, which has led to several studies being conducted to investigate the usability of the platforms that support it. A variety of different usability evaluation methods and attributes have been used, and it has therefore become important to start reviewing this work in a systematic way to determine how the field has developed in the last 15 years. This paper describes a systematic mapping study that performed searches on five electronic libraries to identify usability issues and methods that have been used to evaluate e-learning platforms. Sixty-one papers were selected and analysed, with the majority of studies using a simple research design reliant on questionnaires. The usability attributes measured were mostly related to effectiveness, satisfaction, efficiency, and perceived ease of use. Furthermore, several research gaps have been identified and recommendations have been made for further work in the area of the usability of online learning
Model-Based Feature Extraction for Gait Analysis and Recognition
Human motion analysis has received a great attention from researchers in the last decade due to its potential use in different applications. We propose a new approach to extract human joints (vertex positions) using a model-based method. Motion templates describing the motion of the joints as derived by gait analysis, are parametrized using the elliptic Fourier descriptors. The heel strike data is exploited to reduce the dimensionality of the parametric models. People walk normal to the viewing plane, as major gait information is available in a sagittal view. The ankle, knee and hip joints are successfully extracted with high accuracy for indoor and outdoor data. In this way, we have established a baseline analysis which can be deployed in recognition, marker-less analysis and other areas. The experimental results confirmed the robustness of the proposed method to recognize walking subjects with a correct classification rate of %92
Markerless Feature Extraction for Gait Analysis
Human motion analysis has received a great attention from researchers in the last decade due to its potential use in different applications. We propose a new approach to extract human joints (Vertex positions)using a model-based method. The gait pattern is incorporated to aid the extraction process, where model templates are established through analysis of gait motion. People walk normal to the viewing plane, as major gait information is available in a sagittal view. Gait periodicity and other parameters are estimated by finding the heel strikes. The ankle, knee and hip joints are successfully extracted with high accuracy for indoor and outdoor data. In this way, we have established a baseline analysis which can be deployed in recognition, marker-less analysis and other areas
Gait-Based Pedestrian Detection for Automated Surveillance
In this paper, we explore a new approach for walking pedestrian detection in an unconstrained outdoor environment. The proposed algorithm is based on gait motion as the rhythm of the footprint pattern of walking people is considered the stable and characteristic feature for the classification of moving objects. The novelty of our approach is motivated by the latest research for people identification using gait. The experimental results confirmed the robustness of our method to discriminate between single walking subject, groups of people and vehicles with a detection rate of %100. Furthermore, the results revealed the potential of our method to extend visual surveillance systems to recognize walking people