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Abstract. This paper shows an image/video application using topolog-
ical invariants for human gait recognition. Using a background subtrac-
tion approach, a stack of silhouettes is extracted from a subsequence and
glued through their gravity centers, forming a 3D digital image I . From
this 3D representation, the border simplicial complex ∂K(I) is obtained.
We order the triangles of ∂K(I) obtaining a sequence of subcomplexes
of ∂K(I). The corresponding filtration F captures relations among the
parts of the human body when walking. Finally, a topological gait sig-
nature is extracted from the persistence barcode according to F . In this
work we obtain 98.5% correct classification rates on CASIA-B database1.

1 Introduction

Gait recognition is a challenging problem that gives the possibility to identify
persons at a distance, without any interaction with the subjects, which is very
important in real surveillance scenario [9]. Methods based on feature extraction
using silhouettes or contour of silhouettes have been frequently used [3,10,6,1].
However, many silhouettes obtained during the process are incomplete due to
illumination changes, occlusions, and others. These factors severely affect the
recognition accuracy. Even though, a recent study [3] is aimed at suppressing the
effect of silhouette incompleteness to improve performance on previous approach,
we do not pre-process the silhouettes in this paper.

The stability of geometric descriptors is affected by deformation in the silhou-
ette shape. Even for the same individual, little changes on the walking direction,
illumination variation and the way the clothes fit to the human body may cause
variability of the geometric features. In this paper, the changes of silhouettes in-
duced by gait are considered as a moving nonrigid object. In pattern recognition
tasks, it is important to achieve an object description which is discriminative and
invariant to different geometric transformations. Topological descriptions based
on the persistence of the homology classes seem to be more invariant to these
kind of transformations than classical approaches for gait recognition which are
affected by changes and noise in the silhouette shape, as we have experimentally
shown at the end of this paper. Even without improving the silhouettes, our

1 http://www.cbsr.ia.ac.cn/english/GaitDatabases.asp

L. Alvarez et al. (Eds.): CIARP 2012, LNCS 7441, pp. 244–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51393814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cbsr.ia.ac.cn/english/Gait Databases.asp


Human Gait Identification Using Persistent Homology 245

results are better to the existing methods, like [3]. To the best of the authors
knowledge this approach has never been applied to gait recognition.

Topology has been previously used to match nonrigid shapes [8]. Homology
is a topological invariant frequently used in practice [2]. It could be a robust
representation since the shapes of connected components and holes may change
under geometric transformations, but the number of components and holes could
remain the same. Nevertheless, it is not enough to reach the invariance for the
representation, a set of discriminative features is also needed.

In this paper, a 2D border simplicial complex ∂K(I) is obtained from a stack
of silhouettes extracted from a subsequence and glued through their gravity
centers. We then use incremental algorithm [5] to compute persistent homology
on a particle filtration of ∂K(I). We propose a novel topological representation
for gait recognition from a simplification of the persistence barcode obtained
from the given filtration. We test this representation on the CASIA-B database.

The rest of the paper is organized as follows. In Section 2 we explain how
to obtain the simplicial complex ∂K(I). We present a brief reviewing of the
incremental algorithm for persistent homology in Section 3. Section 4 is devoted
to describe the new method in detail. Experimental results are then reported in
Section 5. We conclude this paper and discuss some future work in Section 6.

2 The Simplicial Complex ∂K(I)

First, the moving object (person) is segmented for each frame applying back-
ground modeling and subtraction. The sequence of silhouettes is analyzed to
extract one subsequence of representation, which include at least a gait cycle [9].
One subsequence of representation is selected for each sequence.

The 3D binary digital picture I = (Z3, 26, 6, B) (where B ⊂ Z
3 is the fore-

ground, Bc = Z
3\B the background, and (26, 6) is the adjacency relation for the

foreground and background, respectively of a subsequence of representation is
built stacking silhouettes aligned by their gravity centers (gc) (see Fig. 1.a).

The border simplicial complex ∂K(I) associated with I is constructed as fol-
lows. First, we compute the 3D cubical complex Q(I) (whose geometric building
blocks are vertices, edges, squares and cubes). Second, we visit all the point of
B, from down to up and from left to right. Let v = (i, j, k) ∈ B. If the following
7 neighbors of v {(i+1, j, k), (i, j+1, k), (i, j, k+1), (i+1, j+1, k), (i+1, j, k+
1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)} are also in B then, the point v and its
7 neighbors form a unit cube which is added to Q(I) together with all its faces
(vertices, edges and squares). This way, we do not consider the small artifacts of
I. Then, the cells of the 2D cubical complex ∂Q(I) are all the squares of Q(I)
which are shared by a voxel of B and a voxel of Bc, together with all their faces
(vertices and edges). The simplicial representation ∂K(I) of I is obtained from
∂Q(I) by subdividing each square of ∂Q(I) in 2 triangles together with all their
faces (see Fig. 3.a). Finally, coordinates of the vertices of ∂K(I) are normalized
to coordinates (x, y, t), where 0 ≤ x, y ≤ 1 and t is the number of silhouette of
the subsequence of representation.
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Fig. 1. (a) Silhouettes aligned by their gravity centers (gc). (b) The 3D binary digital
picture I obtained from the silhouettes. GC is the gravity center of I .

3 Incremental Algorithm for Persistent Homology

In this section, we briefly explain incremental algorithm for computing persistent
homology [5]. Let K be a simplicial complex which is a collection of simplices
(vertices, edges, triangles, tetrahedra). Incremental algorithm needs an ordering
σ1, σ2, . . . , σm of the simplices of K. The ordering is given by a filter function
that assigns a positive integer value to each simplex in K. The value of a simplex
can not be smaller than those of its faces. Simplices of K are listed in ascending
order. Then, for each i,Ki = {σ1, σ2, . . . , σi} is a subcomplex ofK. The sequence
of simplices σi (the number i denotes the order of the simplex in the sequence)
is called filter and the sequence of subcomplexes ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K
filtration. When σi is added to Ki−1, the Betti numbers of Ki can be computed
from σi and the Betti numbers of Ki−1. If σi completes a d-cycle in Ki (d
is the dimension of σi), then βd(Ki) = βd(Ki−1) + 1. Otherwise, βd−1(Ki) =
βd−1(Ki−1)−1. Looking at a filtration as a growing simplicial complex, homology
classes are born and die. The difference between their birth and death time is
called persistence, which quantifies the significance of a topological attribute. The
life interval of a homology class is a horizontal line (interval) in a plane, where
birth and death time correspond to start and end points of the intervals. This
representation is called persistence barcode, which is robust under noise, since
features have long lives, while noise is short-lived. A Matlab implementation
of the incremental algorithm of easy handling2 or C++ implementation3 are
available on the Internet.

4 The New Method

Fig. 2 shows the process chain to obtain the gait signature for gait classification.
From the border simplicial complex ∂K(I) associated with a gait silhouette, we
obtain a concrete filter (ordering of the simplices) depending on the direction of
view (see Subsection 4.1). In Subsection 4.2, the persistence barcode associated

2 http://comptop.stanford.edu/programs/plex-2.0.1-windows.zip
3 http://hg.mrzv.org/Dionysus/

http://comptop.stanford.edu/programs/plex-2.0.1-windows.zip
http://hg.mrzv.org/Dionysus/
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Fig. 2. Extracting the gait topological signature

with the previous filter is then computed. Only the intervals of the barcode that
provide useful topological information is considered and a similarity measure for
comparing two gait sequences is given.

4.1 A Filter for ∂K(I)

The topology of the border simplicial complex ∂K(I) associated with a subse-
quence of representation is, in general, very poor. In this subsection we present a
filtration on ∂K(I) to get a signature using persistence barcode. This filtration
captures relations among the parts of the human body when walking.

Recall that ∂K(I) is a 2D simplicial complex, that is, only vertices, edges
and triangles belong to it. Now, the triangles of ∂K(I) are represented by their
smallest vertices (considering the lexicographical order). If an horizontal (resp.
vertical) direction is considered, then the triangles of ∂K(I) are ordered by the
first (resp. second) coordinate of the smallest vertex of each triangle. In general,
given a direction of view d, a normal plane to d across the origin is computed
(see Fig. 3.b). Then the triangles of ∂K(I) are ordered by the distance of the
smallest vertex of each triangle to the plane.

Fixing a direction of view, we construct two filters A and B. The triangles
of ∂K(I) (together with all their faces) are added to A (resp. B) in increasing
(resp. decreasing) order. Only the first half of the simplices in the filters will be
considered for the topological gait signature. Let us denote these last ordered
sets by K[a,GC] and K[b,GC], respectively.

Fig. 3. (a) Border simplicial complex ∂K(I). (b) A direction of view and its normal
plane.
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4.2 Topological Gait Signature

The gait signature is obtained based on the topological invariants extracted
from persistence barcode after removing the intervals that do not provide useful
information.

First, persistence barcodes are computed for K[a,GC] and K[b,GC]. Second,
we reduce the barcodes removing the intervals [i, j] such that the number of
triangles in [i, j − 1] is less than 2 (i.e., homology classes with low persistence
are ignored).

Now, n cuts are performed homogeneously in the sets K[a,GC] and K[b,GC],
being n a given positive integer, as follows: Suppose K[a,GC] = {σ0, . . . , σm}.
Construct the subsets P a

i = {σ� (i−1)m
n �+1

, . . . , σ� im
n �−1}, 1 ≤ i ≤ n. Fixed i,

the reduced persistence barcode shows: (a) Homology classes that were born or
persist when the simplex σ� (i−1)m

n � is added, and, persist or die when the simplex

σ� im
n � is added. (b) Homology classes that were born in P a

i . An analogous process
is done for K[b,GC]. A vector of dim. 2n is then formed counting the number of
homology classes classified as explained above.

For example, consider the border simplicial complex ∂K(I) given in Fig. 4 which
consists in 136474 simplices. We perform n = 5 cuts on the set K[a,GC] (resp.
K[b,GC]). See the green lines in the persistence barcode representations in Fig. 4.
For instance, consider the setK[b,GC] and fix i = 2. According to Fig. 4, the num-
ber of homology classes that persist or were born in σ13648, and, persist or die in
σ27296 are H0 = 5 in dim. 0 and H1 = 1 in dim. 1. The number of the homology
classes that were born in P b

2 areH0 = 2 in dim. 0 and H1 = 5 in dim. 1.
The topological signature for a gait subsequence considering a fixed direction

of view consists in four 2n-dimensional vectors: (V1, V2, V3, V4) constructed as
explained above.

In our example, we have four 10-dimensional vectors: V1 (resp. V2) is the first
(resp. second) column of the table on the left in Fig. 4. V3 (resp. V4) is the first
(resp. second) column of the table on the right in Fig. 4. The similarity value
for the topological signatures (V1, V2, V3, V4) and (W1,W2,W3,W4) for two gait
subsequences considering a fixed direction of view is done by computing, first,
the angle between the two vectors Vi and Wi, for i = 1, 2, 3, 4 using Eq. 1:

Si = cos−1

(
Vi ·Wi

||Vi|| ||Wi||
)

(1)

Then, four angles (S1, S2, S3, S4) are obtained, since for each subsequence of rep-
resentation, four vectors were computed. The total similarity value for two gait
subsequences considering a fixed direction of view, O1 and O2, is the weighted
sum of the four similarity measures (angles) computed before:

S(O1, O2) = w1S1 + w2S2 + w3S3 + w4S4 (2)
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Fig. 4. Reduced persistence barcodes filtered according to the direction of view given
in Fig. 3.b. Five cuts are done on the sets K[a,GC] and K[b,GC].

5 Experimental Results

In this section, we test the proposed method on 11 directions of view of the
CASIA-B database, which contains 124 subjects. There are 6 normal walking
sequences for each person. CASIA-B database provides image sequences with
background subtraction for each person.

In this experiment the subsequence of representation is all the walking se-
quence, which approximately consists in two gait cycles. We have used 4 direc-
tion of view: The first one is horizontal (axe X), the second one is vertical (axe
Y ), the third one forms 45 degrees with the axes X and Y and is orthogonal to
the axe T (see Section 2). The fourth direction of view is orthogonal to the axe
T and to the third direction of view. See Fig. 5. Besides, in our experiment, the
number of cuts in each direction of view is n = 23 (see Subsection 4.2). Finally,
the value of wi, i = 1, 2, 3, 4, according to Eq. 2 is 1.
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Fig. 5. Directions of view used in our experiments

The experiment was carried out using 4 sequences for training, and 2 as testing
set. The results are compared with the ones in [6,3,10]. Table. 1 shows the cross
validation average (15 combinations) of correct classification rates at rank 1 from
the candidate list. It is also considered the correct classification rate when at
least one subject of the two used as test is correctly classified (ALS). The correct
classification rate (CCR) provides accuracy over the whole test set. However, the
at-least-one subject criterion (ALS) shows an idea of the accuracy by classes.

Table 1. Correct classification rates (CCR in %)

Method 0 18 36 54 72 90 108 126 144 162 180 Avg

Goffredo. M, et al [6] – – 72.1 79.5 85.0 86.5 82.3 81.1 – – – 81.1
Wavelet(FD) [3] 100 100 100 93.4 81.1 90.3 90.3 83.3 91.9 92.7 97.6 93.0
Gait energy image [10] 99.2 99.6 97.6 97.2 97.2 97.6 95.6 96.8 96.4 98.4 99.6 97.7
Our method
rank 1 99.3 99.1 98.8 98.3 97.6 98.0 98.3 98.3 98.2 98.2 99.0 98.5
ALS 1 100 100 100 100 99.0 100 100 100 99.4 98.9 99.1 99.7

To evaluate the discriminative power of the features, we use the first 50 persons
from 90 degree view of the CASIA-B data base. The evaluation was carried out
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using 4 sequences for training, and 2 as testing set. Fig. 6 shows the receiver
operating characteristic (ROC) curve, which provides detailed information on the
trade-off between the two types of errors, False Positive Rate (FPR) and False
Negative Rate (FNR). The intersection of the ROC curve with the diagonal
(see Fig. 6, blue line) is the means of the equal error rate (EER), i.e, where
FPR = FNR. In our experiment EER= 0.04, FPR= 0.04 and therefore, True
Positive Rate (TPR) is 0.96.

6 Conclusion and Future Work

In this paper we propose a new representation based on topological invariants for
human gait recognition. A new approach called reduced persistence barcode is
used to improve the discriminative capacity of the representation. This approach
adds the possibility to use more discriminative topological invariants such as cup
product [7]. Furthermore, we plan to use the bottleneck distance as similarities
measures between barcodes, which guarantees stability in Persistent Homology.
For this, we need a filtration associated to a continuous tame real-valued function
[4]. We want to extend these experiments using other database. On the other
hand, we want to evaluate the diversity in order to combine classifiers based on
geometric and topological features.
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