542 research outputs found
Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV
Picornaviruses contain stable RNA structures at the 5âČ and 3âČ ends of the RNA genome, OriL and OriR involved in viral RNA replication. The OriL RNA element found at the 5âČ end of the enterovirus genome folds into a cloverleaf-like configuration. In vivo SELEX experiments revealed that functioning of the poliovirus cloverleaf depends on a specific structure in this RNA element. Little is known about the OriL of cardioviruses. Here, we investigated structural aspects and requirements of the apical loop of proximal stem-loop SL-A of mengovirus, a strain of EMCV. Using NMR spectroscopy, we showed that the mengovirus SL-A apical loop consists of an octaloop. In vivo SELEX experiments demonstrated that a large number of random sequences are tolerated in the apical octaloop that support virus replication. Mutants in which the SL-A loop size and the length of the upper part of the stem were varied showed that both stem-length and stability of the octaloop are important determinants for viral RNA replication and virus reproduction. Together, these data show that stem-loop A plays an important role in virus replication. The high degree of sequence flexibility and the lack of selective pressure on the octaloop argue against a role in sequence specific RNA-protein or RNA-RNA interactions in which octaloop nucleotides are involved
Anomalous codeposition of cobalt and ruthenium from chloride-sulfate baths
Codeposition of Ru and Co was studied at room temperature and at 50oC with various Ru3+ and Co2+ concentrations in the electrolyte. The codeposition of Co and Ru proved to be anomalous since no pure Ru could be obtained in the presence of Co2+ in the electrolyte, but a significant Co incorporation into the deposit was detected at potentials where the deposition of pure Co was not possible. The composition of the deposits varied monotonously with the change of the concentration ratio of Co2+ and Ru3+. The deposition of Ru was much hindered and the current efficiency was a few percent only when the molar fraction of Co in the deposit was low. Continuous deposits could be obtained only when the molar fraction of Co in the deposit was at least 40 at.%. The deposit morphology was related to the molar fraction of Co in the deposit. The X-ray diffractograms are in conformity with a hexagonal close-packed alloy and indicate the formation of nanocrystalline deposits. Two-pulse plating did not lead to a multilayer but to a Co-rich alloy. Magnetoresistance of the samples decreased with increasing Ru content
Projective dynamics and classical gravitation
Given a real vector space V of finite dimension, together with a particular
homogeneous field of bivectors that we call a "field of projective forces", we
define a law of dynamics such that the position of the particle is a "ray" i.e.
a half-line drawn from the origin of V. The impulsion is a bivector whose
support is a 2-plane containing the ray. Throwing the particle with a given
initial impulsion defines a projective trajectory. It is a curve in the space
of rays S(V), together with an impulsion attached to each ray. In the simplest
example where the force is identically zero, the curve is a straight line and
the impulsion a constant bivector. A striking feature of projective dynamics
appears: the trajectories are not parameterized.
Among the projective force fields corresponding to a central force, the one
defining the Kepler problem is simpler than those corresponding to other
homogeneities. Here the thrown ray describes a quadratic cone whose section by
a hyperplane corresponds to a Keplerian conic. An original point of view on the
hidden symmetries of the Kepler problem emerges, and clarifies some remarks due
to Halphen and Appell. We also get the unexpected conclusion that there exists
a notion of divergence-free field of projective forces if and only if dim V=4.
No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure
Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption
Neutrinos interact only very weakly, so they are extremely penetrating.
However, the theoretical neutrino-nucleon interaction cross section rises with
energy such that, at energies above 40 TeV, neutrinos are expected to be
absorbed as they pass through the Earth. Experimentally, the cross section has
been measured only at the relatively low energies (below 400 GeV) available at
neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here
we report the first measurement of neutrino absorption in the Earth, using a
sample of 10,784 energetic upward-going neutrino-induced muons observed with
the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting
long paths through the Earth is attenuated compared to a reference sample that
follows shorter trajectories through the Earth. Using a fit to the
two-dimensional distribution of muon energy and zenith angle, we determine the
cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an
order of magnitude higher in energy than previous measurements. The measured
cross section is (stat.) (syst.)
times the prediction of the Standard Model \cite{CooperSarkar:2011pa},
consistent with the expectation for charged and neutral current interactions.
We do not observe a dramatic increase in the cross section, expected in some
speculative models, including those invoking new compact dimensions
\cite{AlvarezMuniz:2002ga} or the production of leptoquarks
\cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445
Search for astrophysical sources of neutrinos using cascade events in IceCube
The IceCube neutrino observatory has established the existence of a flux of
high-energy astrophysical neutrinos inconsistent with the expectation from
atmospheric backgrounds at a significance greater than . This flux has
been observed in analyses of both track events from muon neutrino interactions
and cascade events from interactions of all neutrino flavors. Searches for
astrophysical neutrino sources have focused on track events due to the
significantly better angular resolution of track reconstructions. To date, no
such sources have been confirmed. Here we present the first search for
astrophysical neutrino sources using cascades interacting in IceCube with
deposited energies as small as 1 TeV. No significant clustering was observed in
a selection of 263 cascades collected from May 2010 to May 2012. We show that
compared to the classic approach using tracks, this statistically-independent
search offers improved sensitivity to sources in the southern sky, especially
if the emission is spatially extended or follows a soft energy spectrum. This
enhancement is due to the low background from atmospheric neutrinos forming
cascade events and the additional veto of atmospheric neutrinos at declinations
.Comment: 14 pages, 9 figures, 1 tabl
- âŠ