53 research outputs found

    Concentration Dependence of the Effective Mass of He-3 Atoms in He-3/He-4 Mixtures

    Full text link
    Recent measurements by Yorozu et al. (S. Yorozu, H. Fukuyama, and H. Ishimoto, Phys. Rev. B 48, 9660 (1993)) as well as by Simons and Mueller (R. Simons and R. M. Mueller, Czhechoslowak Journal of Physics Suppl. 46, 201 (1976)) have determined the effective mass of He-3 atoms in a He-3/He-4 mixture with great accuracy. We here report theoretical calculations for the dependence of that effective mass on the He-3 concentration. Using correlated basis functions perturbation theory to infinite order to compute effective interactions in the appropriate channels, we obtain good agreement between theory and experiment.Comment: 4 pages, 1 figur

    Single Particle and Fermi Liquid Properties of He-3/--He-4 Mixtures: A Microscopic Analysis

    Full text link
    We calculate microscopically the properties of the dilute He-3 component in a He-3/--He-4 mixture. These depend on both, the dominant interaction between the impurity atom and the background, and the Fermi liquid contribution due to the interaction between the constituents of the He-3 component. We first calculate the dynamic structure function of a He-3 impurity atom moving in He-3. From that we obtain the excitation spectrum and the momentum dependent effective mass. The pole strength of this excitation mode is strongly reduced from the free particle value in agreement with experiments; part of the strength is distributed over high frequency excitations. Above k > 1.7A˚\AA^{-1}$ the motion of the impurity is damped due to the decay into a roton and a low energy impurity mode. Next we determine the Fermi--Liquid interaction between He-4 atoms and calculate the pressure-- and concentration dependence of the effective mass, magnetic susceptibility, and the He-3--He-3 scattering phase shifts. The calculations are based on a dynamic theory that uses, as input, effective interactions provided by the Fermi hypernetted--chain theory. The relationship between both theories is discussed. Our theoretical effective masses agree well with recent measurements by Yorozu et al. (Phys. Rev. B 48, 9660 (1993)) as well as those by R. Simons and R. M. Mueller (Czekoslowak Journal of Physics Suppl. 46, 201 (1996)), but our analysis suggests a new extrapolation to the zero-concentration limit. With that effective mass we also find a good agreement with the measured Landau parameter F_0^a.Comment: 47 pages, 15 figure

    Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Get PDF
    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior

    Upregulation of AEBP1 in endothelial cells promotes tumor angiogenesis in colorectal cancer

    Get PDF
    血管新生は大腸がんの重要な治療標的である.本論文では,大腸がんの腫瘍血管関連遺伝子を探索し,AEBP1(Adipocyte enhancer binding protein 1)の血管内皮細胞における高発現を同定し,AEBP1が腫瘍血管新生促進に働くことを明らかにした

    Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system

    Full text link
    Photoinduced intramolecular electron transfer in linked systems, (R,S)- and (S,S)-naproxen-N-methylpyrrolidine dyads, has been studied by means of spin chemistry methods [magnetic field effect and chemically induced dynamic nuclear polarization (CIDNP)]. The relative yield of the triplet state of the dyads in different magnetic field has been measured, and dependences of the high-field CIDNP of the N-methylpyrrolidine fragment on solvent polarity have been investigated. However, both (S,S)- and (R,S)-enantiomers demonstrate almost identical CIDNP effects for the entire range of polarity. It has been demonstrated that the main peculiarities of photoprocesses in this linked system are connected with the participation of singlet exciplex alongside with photoinduced intramolecular electron transfer in chromophore excited state quenching.This work was supported by the grants 08-03-00372 and 11-03-01104 of the Russian Foundation for Basic Research, and the grant of Priority Programs of the Russian Academy of Sciences, nr. 5.1.5.Magin, I.; Polyakov, N.; Khramtsova, E.; Kruppa, A.; Stepanov, A.; Purtov, P.; Leshina, T.... (2011). Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system. Applied Magnetic Resonance. 41(2-4):205-220. https://doi.org/10.1007/s00723-011-0288-3S205220412-4J.S. Park, E. Karnas, K. Ohkubo, P. Chen, K.M. Kadish, S. Fukuzumi, C.W. Bielawski, T.W. Hudnall, V.M. Lynch, J.L. Sessler, Science 329, 1324–1327 (2010)S.Y. Reece, D.G. Nocera, Annu. Rev. Biochem. 78, 673–699 (2009)M.S. Afanasyeva, M.B. Taraban, P.A. Purtov, T.V. Leshina, C.B. Grissom, J. Am. Chem. Soc. 128, 8651–8658 (2006)M.A. Fox, M. Chanon, in Photoinduced Electron Transfer. C: Photoinduced Electron Transfer Reactions: Organic Substrates (Elsevier, New York, 1988), p. 754P.J. Hayball, R.L. Nation, F. Bochner, Chirality 4, 484–487 (1992)N. Suesa, M.F. Fernandez, M. Gutierrez, M.J. Rufat, E. Rotllan, L. Calvo, D. Mauleon, G. Carganico, Chirality 5, 589–595 (1993)A.M. Evans, J. Clin. Pharmacol. 36, 7–15 (1996)Y. Inoue, T. Wada, S. Asaoka, H. Sato, J.-P. Pete, Chem Commun. 4, 251–259 (2000)T. Yorozu, K. Hayashi, M. Irie, J. Am. Chem. Soc. 103, 5480–5548 (1981)N.J. Turro, in Modern Molecular Photochemistry (Benjamin/Cummings, San Francisco, 1978)K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical Reactions (Akademiai Kiado, Budapest, 1984), p. 419E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107, 3639–3647 (2003)A.S. Lukas, P.J. Bushard, E.A. Weiss, M.R. Wasielewski, J. Am. Chem. Soc. 125, 3921–3930 (2003)R. Nakagaki, K. Mutai, M. Hiramatsu, H. Tukada, S. Nakakura, Can. J. Chem. 66, 1989–1996 (1988)M.C. Jim′enez, U. Pischel, M.A. Miranda, J. Photochem. Photobiol. C Photochem. Rev. 8, 128–142 (2007)S. Abad, U. Pischel, M.A. Miranda, Photochem. Photobiol. Sci. 4, 69–74 (2005)U. Pischel, S. Abad, L.R. Domingo, F. Bosca, M.A. Miranda, Angew. Chem. Int. Ed. 42, 2531–2534 (2003)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 101, 1639–1641 (1979)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 103, 3586–3588 (1981)M. Goez, Chem. Phys. Lett. 188, 451–456 (1992)I.F. Molokov, Y.P. Tsentalovich, A.V. Yurkovskaya, R.Z. Sagdeev, J. Photochem. Photobiol. A 110, 159–165 (1997)U. Pischel, S. Abad, M.A. Miranda, Chem. Commun. 9, 1088–1089 (2003)H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 57, 322–328 (1984)Y. Sakaguchi, H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 53, 39–42 (1980)H. Yonemura, H. Nakamura, T. Matsuo, Chem. Phys. Lett. 155, 157–161 (1989)N. Hata, M. Hokawa, Chem. Lett. 10, 507–510 (1981)M. Shiotani, L. Sjoeqvist, A. Lund, S. Lunell, L. Eriksson, M.B. Huang, J. Phys. Chem. 94, 8081–8090 (1990)E. Schaffner, H. Fischer, J. Phys. Chem. 100, 1657–1665 (1996)Y. Mori, Y. Sakaguchi, H. Hayashi, Chem. Phys. Lett. 286, 446–451 (1998)I.M. Magin, A.I. Kruppa, P.A. Purtov, Chem. Phys. 365, 80–84 (2009)K.K. Barnes, Electrochemical Reactions in Nonaqueous Systems (M. Dekker, New York, 1970), p. 560J. Bargon, J. Am. Chem. Soc. 99, 8350–8351 (1977)M. Goez, I. Frisch, J. Phys. Chem. A 106, 8079–8084 (2002)A.K. Chibisov, Russ. Chem. Rev. 50, 615–629 (1981)J. Goodman, K. Peters, J. Am. Chem. Soc. 107, 1441–1442 (1985)H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C.-H. Tung, Y. Tanimoto, Bull. Chem. Soc. Jpn. 69, 2801–2813 (1996)P.A. Purtov, A.B. Doktorov, Chem. Phys. 178, 47–65 (1993)A.I. Kruppa, O.I. Mikhailovskaya, T.V. Leshina, Chem. Phys. Lett. 147, 65–71 (1988)M.E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schröder, H.J. Neusser, E.W. Schlag, H. Seidlitz, Chem. Phys. 17, 139–145 (1976)K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel, Z. Phys. Chem. 101, 371–390 (1976)K. Gnadig, K.B. Eisenthal, Chem. Phys. Lett. 46, 339–342 (1977)T. Nishimura, N. Nakashima, N. Mataga, Chem. Phys. Lett. 46, 334–338 (1977)M.G. Kuzmin, I.V. Soboleva, E.V. Dolotova, D.N. Dogadkin, High Eng. Chem. 39, 86–96 (2005

    An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, <it>Spodoptera littoralis</it>, and to identify candidate genes involved in odour/pheromone detection.</p> <p>Results</p> <p>By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the <it>Bombyx mori </it>proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.</p> <p>Conclusions</p> <p>Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in <it>S. littoralis</it>, and for ultimately identifying original targets to fight against moth herbivorous pests.</p

    Natural Language Interface for Relational Database

    No full text
    corecore