56 research outputs found

    Nanostructured Gd0.8Sr0.2Fe0.8M0.2O3 (M=Cr, Ga) materials for solid oxide fuel cell cathodes

    Get PDF
    AbstractPolycrystalline samples of Gd0.8Sr0.2Fe0.8M0.2O3 (M=Cr, Ga) are prepared by combustion route and pore wetting technique in order to compare the influence of the morphology in the performance of two cathodes for Solid Oxide Fuel Cells. When polycarbonate membranes are used as templates nanowire arrays with a diameter of 50–70 nm are obtained. Comparing the results obtained by Electrochemical Impedance Spectroscopy (EIS) measurements, it is clearly observed that the cathodic resistance considerably decreases when optimized synthesis parameters are used, obtaining a better performance for the Gd0.8Sr0.2Fe0.8Ga0.2O3 nanowires with an area specific resistance (ASR) value at 850∘C of 0.195 Ω cm2

    Ulcerogenic Helicobacter pylori Strains Isolated from Children: A Contribution to Get Insight into the Virulence of the Bacteria

    Get PDF
    Infection with Helicobacter pylori is the major cause for the development of peptic ulcer disease (PUD). In children, with no other etiology for the disease, this rare event occurs shortly after infection. In these young patients, habits of smoking, diet, consumption of alcohol and non-steroid anti-inflammatory drugs and stress, in addition to the genetic susceptibility of the patient, represent a minor influence. Accordingly, the virulence of the implicated H. pylori strain should play a crucial role in the development of PUD. Corroborating this, our in vitro infection assays comparing a pool of five H. pylori strains isolated from children with PUD to a pool of five other pediatric clinical isolates associated with non-ulcer dyspepsia (NUD) showed the greater ability of PUD strains to induce a marked decrease in the viability of gastric cells and to cause severe damage in the cells cytoskeleton as well as an impairment in the production/secretion of mucins. To uncover virulence features, we compared the proteome of these two groups of H. pylori strains. Two-dimensional gel electrophoresis followed by mass-spectrometry allowed us to detect 27 differentially expressed proteins between them. In addition to the presence of genes encoding well established virulence factors, namely cagA, vacAs1, oipA “on” status, homB and jhp562 genes, the pediatric ulcerogenic strains shared a proteome profile characterized by changes in the abundance of: motility-associated proteins, accounting for higher motility; antioxidant proteins, which may confer increased resistance to inflammation; and enzymes involved in key steps in the metabolism of glucose, amino acids and urea, which may be advantageous to face fluctuations of nutrients. In conclusion, the enhanced virulence of the pediatric ulcerogenic H. pylori strains may result from a synergy between their natural ability to better adapt to the hostile human stomach and the expression of the established virulence factors

    Phase diagram of a coupled tetrahedral Heisenberg model

    Full text link
    The phase diagram of a coupled tetrahedral Heisenberg model is obtained. The quantum chain has a local gauge symmetry and its eigenspectrum is obtained by the composition of the eigenspectra of spin-1/2 XXZ chains with arbitrary distribution of spin-3/2 impurities. The phase diagram is quite rich with an infinite number of phases with ferromagnetic, antiferromagnetic or ferrimagnetic order. In some cases the ground state and the low lying eigenlevels of the model can be exactly calculated since they coincide with the eigenlevels of the exactly integrable XXZ chain. The thermodynamical properties of the model at low temperatures is also studied through finite-size analysis.Comment: 23 pages, 15 figure

    Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins

    Get PDF
    We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The gentic diversity of H pylori is known to be influenced by these genomic elements including prophages who’s geneomes range from 22.6 to 33.0 Kbp. There was a high conservation of integration site shared in over 50% of cases with greater than 40% or prophage genomes harbouring insertion sequences (IS). Furthermore prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. There was evidence of recombination within the genome of some prophages, which resulted in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes

    Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries

    Get PDF
    Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na–O2 battery performance. Here we show NaO2 as the only discharge product from Na–O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide dihydrate was not detected in the discharged electrode with up to 6000 ppm of H2O added to the electrolyte, but it was detected with ambient air exposure. In addition, we show that the sizes and distributions of NaO2 can be highly dependent on the discharge rate, and we discuss the formation mechanisms responsible for this rate dependence. Micron-sized (∼500 nm) and nanometer-scale (∼50 nm) cubes were found on the top and bottom of a carbon nanotube (CNT) carpet electrode and along CNT sidewalls at 10 mA/g, while only micron-scale cubes (∼2 μm) were found on the top and bottom of the CNT carpet at 1000 mA/g, respectively.Seventh Framework Programme (European Commission) (Marie Curie International Outgoing Fellowship, 2007-2013))National Science Foundation (U.S.) (MRSEC Program, award number DMR-0819762)Robert Bosch GmbH (Bosch Energy Research Network (BERN) Grant)China Clean Energy Research Center-Clean Vehicles Consortium (CERC-CVC) (award number DE-PI0000012)Skolkovo Institute of Science and Technology (Skoltech-MIT Center for Electochemical Energy Storage

    Higher Expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 Chemokines in the Skin Associated with Parasite Density in Canine Visceral Leishmaniasis

    Get PDF
    Several previous studies correlated immunopathological aspects of canine visceral leishmaniasis (CVL) with tissue parasite load and/or the clinical status of the disease. Recently, different aspects of the immune response in Leishmania-infected dogs have been studied, particularly the profile of cytokines in distinct compartments. However, the role of chemokines in disease progression or parasite burdens of the visceralising species represents an important approach for understanding immunopathology in CVL. We found an increase in inflammatory infiltrate, which was mainly composed of mononuclear cells, in the skin of animals presenting severe forms of CVL and high parasite density. Our data also demonstrated that enhanced parasite density is positively correlated with the expression of CCL2, CCL4, CCL5, CCL21, and CXCL8. In contrast, there was a negative correlation between parasite density and CCL24 expression. These findings represent an advance in the knowledge of the involvement of skin inflammatory infiltrates in CVL and the systemic consequences and may contribute to developing a rational strategy for the design of new and more efficient prophylactic tools and immunological therapies against CVL

    Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa

    Get PDF
    West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe

    Electrochemical characterization of La<sub>0.6</sub>Ca<sub>0.4</sub>Fe<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> perovskite cathode for IT-SOFC

    No full text
    Electrolyte supported symmetric cells featuring La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) electrodes are studied by electrochemical impedance spectroscopy. The aim is to describe the polarization losses of this mixed ionic electronic conductor electrode at various cell operating conditions for cells sintered at different temperatures. An equivalent circuit describing the cathode polarization resistances was constructed from analyzing impedance spectra recorded at different oxygen partial pressures and temperatures. Favorable oxygen reduction reaction properties are demonstrated for the LCFN cell sintered at 750 degrees C with a polarization resistance of 0.05 Omega cm(2) at an operating temperature of 800 degrees C in pure oxygen. (C) 2013 Elsevier B.V. All rights reserved

    Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD

    Get PDF
    Quadriceps muscle phenotype varies widely between patients with chronic obstructive pulmonary disease (COPD) and cannot be determined without muscle biopsy. We hypothesised that measures of skeletal muscle adiposity could provide noninvasive biomarkers of muscle quality in this population. In 101 patients and 10 age-matched healthy controls, mid-thigh cross-sectional area, percentage intramuscular fat and skeletal muscle attenuation were calculated using computed tomography images and standard tissue attenuation ranges: fat -190– -30 HU; skeletal muscle -29–150 HU. Mean±sd percentage intramuscular fat was higher in the patient group (6.7±3.5% versus 4.3±1.2%, p = 0.03). Both percentage intramuscular fat and skeletal muscle attenuation were associated with physical activity level, exercise capacity and type I fibre proportion, independent of age, mid-thigh cross-sectional area and quadriceps strength. Combined with transfer factor of the lung for carbon monoxide, these variables could identify >80% of patients with fibre type shift with >65% specificity (area under the curve 0.83, 95% CI 0.72–0.95). Skeletal muscle adiposity assessed by computed tomography reflects multiple aspects of COPD related muscle dysfunction and may help to identify patients for trials of interventions targeted at specific muscle phenotypes
    corecore