50 research outputs found

    Ensembles of Human MTL Neurons Jump Back in Time in Response to a Repeated Stimulus

    Get PDF
    Episodic memory, which depends critically on the integrity of the medial temporal lobe (MTL), has been described as ‘‘mental time travel’’ in which the rememberer ‘‘jumps back in time.’’ The neural mechanism underlying this ability remains elusive. Mathematical and computational models of performance in episodic memory tasks provide a specific hypothesis regarding the computation that supports such a jump back in time. The models suggest that a representation of temporal context, a representation that changes gradually over macroscopic periods of time, is the cue for episodic recall. According to these models, a jump back in time corresponds to a stimulus recovering a prior state of temporal context. In vivo single-neuron recordings were taken from the human MTL while epilepsy patients distinguished novel from repeated images in a continuous recognition memory task. The firing pattern of the ensemble of MTL neurons showed robust temporal autocorrelation over macroscopic periods of time during performance of the memory task. The gradually-changing part of the ensemble state was causally affected by the visual stimulus being presented. Critically, repetition of a stimulus caused the ensemble to elicit a pattern of activity that resembled the pattern of activity present before the initial presentation of the stimulus. These findings confirm a direct prediction of this class of temporal context models and may be a signature of the mechanism that underlies the experience of episodic memory as mental time travel

    Differences in Mnemonic Processing by Neurons in the Human Hippocampus and Parahippocampal Regions

    Get PDF
    Different structures within the medial-temporal lobe likely make distinct contributions to declarative memory. In particular, several current psychological and computational models of memory predict that the hippocampus and parahippocampal regions play different roles in the formation and retrieval of declarative memories [e.g., Norman, K. A., & O\u27Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning systems approach. Psychological Review, 110, 611-646, 2003]. Here, we examined the neuronal firing patterns in these two regions during recognition memory. Recording directly from neurons in humans, we find that cells in both regions respond to novel stimuli with an increase in firing (excitation). However, already on the second presentation of a stimulus, neurons in these regions show very different firing patterns. In the parahippocampal region there is dramatic decrease in the number of cells responding to the stimuli, whereas in the hippocampus there is recruitment of a large subset of neurons showing inhibitory (decrease from baseline firing) responses. These results suggest that inhibition is a mechanism used by cells in the human hippocampus to support sparse coding in mnemonic processing. The findings also provide further evidence for the division of labor in the medial-temporal lobe with respect to declarative memory processes

    Long-term coding of personal and universal associations underlying the memory web in the human brain

    Get PDF
    Neurons in the medial temporal lobe (MTL), a critical area for declarative memory, have been shown to change their tuning in associative learning tasks. Yet, it is unclear how durable these neuronal representations are and if they outlast the execution of the task. To address this issue, we studied the responses of MTL neurons in neurosurgical patients to known concepts (people and places). Using association scores provided by the patients and a web-based metric, here we show that whenever MTL neurons respond to more than one concept, these concepts are typically related. Furthermore, the degree of association between concepts could be successfully predicted based on the neurons’ response patterns. These results provide evidence for a long-term involvement of MTL neurons in the representation of durable associations, a hallmark of human declarative memory

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner

    Get PDF
    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO

    Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo

    Get PDF
    Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore