122 research outputs found

    Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    Full text link
    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.Comment: 16 pages, 5 figure

    Long Meg : rock art recording using 3D laser scanning

    Get PDF
    This article focuses on the results obtained from the laser scanning recording of the Long Meg standing stone (NY56933716, CCSMR6154, NMR 23663) (Cumbria). This recording is result of the project “Breaking through rock art recording: three dimensional laser scanning of megalithic rock art”, led by Margarita Díaz-Andreu and sponsored by the AHRC under the Innovation Awards scheme, aimed to explore the potential of this novel technique. In this article two different methods to visualise the rock art data are compared: one using freely available software, and the other one employing software especially developed for archaeology

    External validation and updating of prediction models of bleeding risk in patients with cancer receiving anticoagulants

    Get PDF
    OBJECTIVE: Patients with cancer are at increased bleeding risk, and anticoagulants increase this risk even more. Yet, validated bleeding risk models for prediction of bleeding risk in patients with cancer are lacking. The aim of this study is to predict bleeding risk in anticoagulated patients with cancer. METHODS: We performed a study using the routine healthcare database of the Julius General Practitioners' Network. Five bleeding risk models were selected for external validation. Patients with a new cancer episode during anticoagulant treatment or those initiating anticoagulation during active cancer were included. The outcome was the composite of major bleeding and clinically relevant non-major (CRNM) bleeding. Next, we internally validated an updated bleeding risk model accounting for the competing risk of death. RESULTS: The validation cohort consisted of 1304 patients with cancer, mean age 74.0±10.9 years, 52.2% males. In total 215 (16.5%) patients developed a first major or CRNM bleeding during a mean follow-up of 1.5 years (incidence rate; 11.0 per 100 person-years (95% CI 9.6 to 12.5)). The c-statistics of all selected bleeding risk models were low, around 0.56. Internal validation of an updated model accounting for death as competing risk showed a slightly improved c-statistic of 0.61 (95% CI 0.54 to 0.70). On updating, only age and a history of bleeding appeared to contribute to the prediction of bleeding risk. CONCLUSIONS: Existing bleeding risk models cannot accurately differentiate bleeding risk between patients. Future studies may use our updated model as a starting point for further development of bleeding risk models in patients with cancer

    Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos

    Get PDF
    DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology

    A massive, Late Neolithic pit structure associated with Durrington Walls Henge

    Get PDF
    YesA series of massive geophysical anomalies, located south of the Durrington Walls henge monument, were identified during fluxgate gradiometer survey undertaken by the Stonehenge Hidden Landscapes Project (SHLP). Initially interpreted as dewponds, these data have been re-evaluated, along with information on similar features revealed by archaeological contractors undertaking survey and excavation to the north of the Durrington Walls henge. Analysis of the available data identified a total of 20 comparable features, which align within a series of arcs adjacent to Durrington Walls. Further geophysical survey, supported by mechanical coring, was undertaken on several geophysical anomalies to assess their nature, and to provide dating and environmental evidence. The results of fieldwork demonstrate that some of these features, at least, were massive, circular pits with a surface diameter of 20m or more and a depth of at least 5m. Struck flint and bone were recovered from primary silts and radiocarbon dating indicates a Late Neolithic date for the lower silts of one pit. The degree of similarity across the 20 features identified suggests that they could have formed part of a circuit of large pits around Durrington Walls, and this may also have incorporated the recently discovered Larkhill causewayed enclosure. The diameter of the circuit of pits exceeds 2km and there is some evidence that an intermittent, inner post alignment may have existed within the circuit of pits. One pit may provide evidence for a recut; suggesting that some of these features could have been maintained through to the Middle Bronze Age. Together, these features represent a unique group of features related to the henge at Durrington Walls, executed at a scale not previously recorded.The University of Bradford Research Development Fund and the University of St Andrews funded this open access publication.Supplementary data can be found at https://intarch.ac.uk/journal/issue55/4/supp-text.htm

    Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution

    Get PDF
    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with “micro-resolution” at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a “habitat-shift” into bulk water. Second, the protocell stage started with a substage of “pseudo-protocells”, with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent “true-protocell” substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single “genes”, but before the appearance of a “chromosome” with linked genes

    Towards optimal use of antithrombotic therapy of people with cancer at the end of life: a research protocol for the development and implementation of the SERENITY shared decision support tool Thrombosis Research

    Get PDF
    Background: Even though antithrombotic therapy has probably little or even negative effects on the well-being of people with cancer during their last year of life, deprescribing antithrombotic therapy at the end of life is rare in practice. It is often continued until death, possibly resulting in excess bleeding, an increased disease burden and higher healthcare costs. Methods: The SERENITY consortium comprises researchers and clinicians from eight European countries with specialties in different clinical fields, epidemiology and psychology. SERENITY will use a comprehensive approach combining a realist review, flash mob research, epidemiological studies, and qualitative interviews. The results of these studies will be used in a Delphi process to reach a consensus on the optimal design of the shared decision support tool. Next, the shared decision support tool will be tested in a randomised controlled trial. A targeted implementation and dissemination plan will be developed to enable the use of the SERENITY tool across Europe, as well as its incorporation in clinical guidelines and policies. The entire project is funded by Horizon Europe.Results: SERENITY will develop an information-driven shared decision support tool that will facilitate treatment decisions regarding the appropriate use of antithrombotic therapy in people with cancer at the end of life. Conclusions: We aim to develop an intervention that guides the appropriate use of antithrombotic therapy, prevents bleeding complications, and saves healthcare costs. Hopefully, usage of the tool leads to enhanced empowerment and improved quality of life and treatment satisfaction of people with advanced cancer and their care givers
    corecore