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SUMMARY
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differen-
tiation during development. While many genes regulating embryonic development have been identified, the
underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we
produced amultimodal resource and genomic regulatory map for the zebrafish community, which integrates
single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput
sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification
of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo.
We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-
ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for �23,000 single
nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmen-
tation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We inte-
grated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D
genome organization and identified new regulatory principles between chromatinmodalities prevalent during
zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular
roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regu-
lating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and es-
tablishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs,
providing a valuable open resource for genomics, developmental, molecular, and computational biology.
INTRODUCTION

The coordination of cis-regulatory elements (CREs) is essential to

the tight regulation of gene expression programs that direct cell

fate changes in embryonic development. The types of CREs
This is an open access article und
include promoters, enhancers, insulators, and silencers, whose

sequence and dynamic physical properties determine their func-

tion. The fundamental unit of aCRE is a nucleosome-depleted re-

gion (NDR), which acts as a binding platform for transcriptional

regulators and can be highly dynamic across cell types due to
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the combined action of pioneering factors and nucleosome re-

modelers. Mammalian NDRs often harbor divergently oriented

core promoter sequence elements and transcription start sites

(TSSs) and are flanked by well-positioned nucleosomes whose

histone post-translational modifications (PTMs) reflect the acti-

vation state and/or class of CRE.1,2 This complex architecture

has been described as the regulatory interface between the

genome and its functional output.3

The development of single-cell high-throughput molecular

assays4–6 has revolutionized systems genomics, allowing the

extensive profiling of cell-type diversity of almost any tissue

or organism with little to no prior information. The assay for

transposase-accessible chromatin using sequencing7 can

quantify the extent of CRE nucleosome depletion on a

genome-wide scale. Its further development has enabled the

measure of chromatin accessibility in tens of thousands of sin-

gle cells from such diverse biological contexts as cell lines,8,9

Drosophila embryos,10 primary tissues,11–16 and human orga-

noids.17 These datasets have generated comprehensive re-

sources of putative distal regulatory elements, transcriptional

regulators, cell-type specificity of inherited disease-associated

traits,11,16 putative higher-order interactions between regulato-

ry elements,9 and epigenomic contribution to lineage priming.15

However, single-cell assay for transposase-accessible chro-

matin with high-throughput sequencing (scATAC-seq) data

present several distinct analysis challenges from single-cell

RNA-sequencing (scRNA-seq) measurements, such as higher

sparsity and feature dimensionality, as well as typically un-

known input regions.18 Therefore, computational method

development for this data type is an important and ongoing

effort.

The zebrafish has a long history as a model system for embry-

ology, and forward genetic screens have identified many genes

with key roles during vertebrate development.19 Zebrafish have

been used increasingly for cutting-edge genomic profiling,20–25

but its cis-regulatory dynamics have yet to be characterized at

single-cell resolution. Furthermore, key resources available for

mouse or human genomics studies, such as genome classifica-

tions based on histone PTM chromatin immunoprecipitation

sequencing (ChIP-seq) signals, high-depth genome-wide prob-

ing of three-dimensional (3D) chromatin spatial organization,

and databases of regulatory elements are limited for the zebra-

fish community.

In this study, we characterized the genome-wide chromatin ar-

chitecture of the whole 24-h post-fertilization (hpf)-stage zebrafish

embryo, at bulk and single-cell resolution, to generate a resource

of cell-type-specific candidate CREs. We applied single-cell

combinatorial indexing ATAC-seq (sci-ATAC-seq)10 to whole em-

bryos, generating accessibility profiles for �23,000 single nuclei.

Taking inspiration from chromatin segmentation,26–28 we devel-

oped a hidden Markov model (HMM)-based algorithm

called single-cell regulatory landscape segmentation, or Screg-

Seg, to classify regions of the genome into a number of distinct

states based on either single-cell or cell-group-collapsed

(pseudo-bulk) accessibility tracks. We use this approach (1) to

select initial informative genomic regions for subsequent dimen-

sionality reduction andcell clustering, and (2) for anunbiasedchar-

acterization of complex combinatorial cell-specific CREdynamics
2 Cell Genomics 2, 100083, January 12, 2022
that gobeyondandare independent of the typical peakcalling and

differential accessibility analysis. We show that diverse cell types

present in the24-hpfembryocanbe identifiedby their accessibility

profiles and have identified complex patterns of CRE dynamics

that reflect the combinatorial nature of transcriptional regulation.

Sequence analysis of these cis-regulators allows us to infer puta-

tive transcription factors (TFs) that bind chromatin in a cell-type-

specific manner. Using bulk ChIP-seq data for histone PTMs

known to occur at CREs, we provide the additional resource of a

genome-wide classification for promoter- and enhancer-like chro-

matin states at the 24-hpf stage. Integrating these classifications

with sci-ATAC-seq and bulk in situ Hi-C, we show clear relation-

ships between promoter-like states, constitutive accessibility,

and 3D insulation, as well as between co-accessibility and 3D in-

teractions, thereby expanding insight into regulatory principles

that are active during zebrafish development. Lastly, we apply

sci-ATAC-seq to embryos harboring a mutation in the cloche

gene npas4l, which lack blood and endothelial cells,29,30 and

observe hitherto undescribed changes in muscle and epidermal

cell numbers.We detect and validate candidate cell-type-specific

CREs around the npas4l locus, suggesting an intricate network

upstream of this hematovascular transcriptional master regulator.

We provide intuitive access to our data and analyses via an

interactive browser (https://scbrowse.mdc-berlin.de/) and the

University of California, Santa Cruz (UCSC) genome browser

hub (http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&

hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/ohler/scipipe_

v4/hub.txt).

RESULTS

Single-nucleus accessibility profiles separate whole
embryos into cell types
We set out to determine a comprehensive genomic regulatory

map of the zebrafish, Danio rerio, at the 24-hpf stage with the

bipartite goal of (1) uncovering regulatory architecture and prin-

ciples and (2) establishing a resource of genome-wide regulatory

annotations for future studies. At 24 hpf, zebrafish embryos have

established the classic bilateral vertebrate body plan and are at a

key transitional point of cell-type specification and organogen-

esis, arguably the most morphologically comparable across

diverse vertebrate embryos.31,32 DNA accessibility within chro-

matin is highly variable between cell types,33 mostly reflecting

regulatory differences. We, therefore, used single-nucleus

combinatorial indexing10 to determine genome-wide accessi-

bility profiles for many cell types in parallel from whole zebrafish

embryos. Nuclei were isolated from staged embryos, subjected

to two rounds of barcoding via tagmentation and PCR with

random mixing in between, and the resulting DNA fragments

sequenced to high depth (Figure 1A). Species mixing with nuclei

from the sea urchin demonstrated single-cell resolution with a

barcode-collision rate of �14%–15%,34 and a distinct distribu-

tion of barcodes with >1,000 unique reads was considered

to represent intact nuclei (Figures S1A and S1B). In all, we

sequenced �23,000 nuclei with an average depth per nucleus

of >10,000 unique fragments from 3 independent experiments,

with 24 hpf embryos from wild-type (two experiments) or npas4l

(cloche) mutant lines (see below for detailed characterization).

https://scbrowse.mdc-berlin.de/
http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&amp;hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/ohler/scipipe_v4/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&amp;hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/ohler/scipipe_v4/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&amp;hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/ohler/scipipe_v4/hub.txt
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Whereas single-cell RNA expression measurements are typi-

cally quantified based on known gene annotations, the initial

definition of genomic regions of interest (also referred to as fea-

tures) to be quantified from single-nucleus accessibility maps

poses a challenge. Current solutions to this issue aggregate

the data from all cells to identify highly accessible regions that

may subsequently be refined through an iteration of clustering,

cell aggregation within clusters, and re-selection of regions, as

in iterative latent semantic indexing (LSI).15,37 Here, we propose

an alternative strategy to identify relevant regions that represent

the chromatin accessibility of all captured cell types using an

HMM. The HMM takes the observed accessibility for each

genomic region in each single nucleus and summarizes the

distinct cross-cell accessibility profiles (referred to as states)

that underlie these observations while accounting for correla-

tions between neighboring genomic regions. Specifically, we

use a 50-state HMM with Dirichlet multinomial emission proba-

bilities and tracks for each single nucleus at 1-kb resolution.

The model is then used to infer the most probable state for

each 1-kb region across the genome. We observe that some

states (accessibility profiles) represent accessibility in all cells

(constitutive), while others show high cell-type-specific accessi-

bility, or minimal, sporadic accessibility, likely constituting

genomic background signals (Figures 1B and S1C). To establish

informative (foreground) regions for the downstream analysis,

we selected those confidently associated with HMM states

that cover <1.5% of the genome, resulting in 71,550 features af-

ter further processing (Figure 1C; see STAR Methods). The likely

functional relevance of these regions is supported by on average

(1) higher read coverage across the cells, (2) higher ChIP-seq

signal for the CRE-associated histone PTM H3K27ac, (3) enrich-

ment for short fragments associated with NDRs, and (4)

the tendency to be enriched among accessible regions specific

to subpopulations of cells (Figures 1C–1F and S1C). Foreground

state regions are then used as features for the downstream

dimensionality reduction step. We refer to this approach as sin-

gle-cell regulatory landscape segmentation for feature identifi-
Figure 1. Generating cell-type-specific accessibility profiles from 24-h

(A) Schematic of sci-ATAC-seq method. Nuclei are extracted from flash-frozen w

well, and barcoded during tagmentation. Tagmented nuclei are pooled and then s

PCR. The resulting DNA fragments are pooled and sequenced, with unique barc

(B) Schematic representation of ScregSeg for genomic feature identification (Scre

that assigns a state to each bin based on the accessibility distribution over cells.

regions of interest for the dimensionality reduction using latent Dirichlet allocatio

(C) Number of 1-kb regions per state (state frequency). States with low, medium, o

‘‘ambiguous,’’ and ‘‘background.’’ Foreground states were selected based on th

(D) Average number of sci-ATAC-seq reads at 1-kb genomic regions assigned to

confidence intervals around the mean (as determined by seaborn.barplot).

(E) Average number of bulk H3K27sc ChIP-seq reads at 1-kb genomic regions ass

95% confidence intervals around the mean (as determined by seaborn.barplot).

(F) Normalized fragment size distribution of 1-kb genomic regions assigned to fo

fidence intervals around the mean (as determined by seaborn.lineplot).

(G) UMAP representation of the dimensionality-reduced and batch-corrected feat

determined by density clustering.

(H) Summary pseudo-bulk chromatin accessibility profiles from aggregated cells f

zebrafish embryos. Consensus annotations derived from enrichment of genes th

database terms and published cell-type markers.25

(I) Per-cell distribution of accessibility at regions covering the promoters of marke

enrichment score for a given region.35,36
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cation (ScregSeg-fi). ScregSeg-fi analyses are scalable to large

datasets through memory-efficient and parallelized processing

(see Note S1). Benchmarking feature selection by ScregSeg-fi

on several external scATAC-seq datasets, alongside our zebra-

fish sci-ATAC-seq, demonstrated that it leads to comparable

or improved clustering performance relative to feature selec-

tion by iterative LSI (Figures S1D and S1E; see Note S1 for a

detailed comparison). After dimensionality reduction with latent

Dirichlet allocation (LDA) using cisTopic35 (Figures 1B and

S1F), the resulting low-dimensional matrix was subjected to

batch correction with a linear regression model, followed by uni-

formmanifold approximation and projection (UMAP) transforma-

tion (Figure S1G; see STAR Methods). Finally, grouping nuclei

according to density in the UMAP space led to 17 clusters as

candidate cell types (Figure 1G; see STAR Methods).

To annotate the sci-ATAC-seq clusters, we tested whether

cluster-specific differentially accessible regions are enriched in

the vicinity of gene sets defined by anatomical features from

the ZFIN database or cluster-specific marker genes from a pub-

lished stage-matched scRNA-seq dataset25,38 and confirmed

the cell-type annotations through visual inspection of known

cell-type marker genes (Figures 1H and 1I; Tables S1 and S2;

see STARMethods). Endothelium, blood, neural crest, and optic

vesicle annotations could be confidently assigned to four distinct

clusters (Figure 1G, clusters 11, 8, 10, and 4, respectively),

showing accessibility around known marker genes fli1b,39 ga-

ta1a,40,41 sox10,42 and vsx2,43 respectively (Figures 1H and 1I).

Three separate territories with substructure were also observed:

(1) A largely mesodermal territory encompassing clusters 16

and 3, which show high accessibility around muscle cell

marker genes such as myog; cluster 14, which has high

accessibility around early mesoderm markers such as

myf5, presumably representing less differentiated tailbud

precursors and caudal mesoderm; and cluster 1, which is

enriched with pharyngeal mesoderm markers. The divi-

sion of muscle into clusters 16 and 3 is possibly due to
pf zebrafish embryos

hole embryos staged at 24 hpf. Nuclei are sorted into 96-well plates, 2,500 per

plit into 96-well plates, 25 per well, and a second set of barcodes introduced by

ode combinations representing single cells.

gSeg-fi). The genome is divided into 1-kb bins and segmented using an HMM

Subsequently, putative informative (foreground) states are used to define the

n (LDA).

r high numbers of assigned genomic regions were grouped into ‘‘foreground,’’

e state frequency.

foreground, ambiguous, and background states. Error bars indicate the 95%

igned to foreground, background, or ambiguous states. Error bars indicate the

reground, ambiguous, and background states. Ribbons represent 95% con-

ure matrix (cell-Topic matrix) on�23,000 cells. Colors represent the 17 clusters

or each density cluster at marker genes of major tissues and cell types of 24-hpf

at map to differentially accessible segments per cluster, with ZFIN anatomical

r genes, represented in UMAP space. Color represents the rank-based AUCell



A

B

C

Figure 2. Segmentation of accessibility profiles reveals cell-type-specific and shared regulatory regions

(A) Schematic representation of ScregSeg for identifying regulatory programs (ScregSeg-pi). The genome is divided into 500-bp bins and segmented based on

the accessibility distribution over the cluster-collapsed accessibility tracks using a 30-state HMM. The bins are assigned to states that give rise to the classi-

fication of the regulatory landscape of the genome.

(legend continued on next page)
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the remaining local batch effects (Figure S1G; see STAR

Methods).

(2) In the center of themap, clusters 5 and 15 have high acces-

sibility around epidermal and peridermal markers such as

krt4, and in cluster 15, ‘‘olfactory placode’’ and ‘‘pronephric

duct’’ annotations; cluster 13 is enriched for ‘‘pharyngeal

arch’’ and ‘‘skeletal’’ terms, and given its location in the

UMAPspace, is likely to represent non-mesodermal contri-

butions to the pharyngeal arches; cluster 17, which,

despite showing low but significant enrichment for

epidermal terms, displays a relatively flat accessibility pro-

file, suggesting it may represent a different cell state such

as mitotic or dying cells, although no such Gene Ontology

(GO) terms were enriched (data not shown).

(3) A largely neuronal territory with broad enrichment around

the early neuronal regulator sox244 that is subdivided into

cluster 9, representing spinal cord; clusters 7 and 2, rep-

resenting hindbrain; cluster 6, representing differentiating

neurons; and cluster 12, representing midbrain (Figures

1G–1I; Table S1). Based on these marker gene associa-

tions, the clusters are, from this point on, assigned repre-

sentative names (Figure 1H).

ScregSeg defines single- and multi-cluster-specific
accessibility dynamics
Cell diversity results from the implementation of regulatory ‘‘pro-

grams,’’ which represent unique combinatorial activities of both

cis and trans regulators. Importantly, individual components of

these programs may be reused in several different contexts. A

typical differential accessibility analysis selects regions that are

significantly attributed to a predefined set of foreground cells

compared to a selected set of background cells. This introduces

a bias against complex multi-cell-type accessibility patterns and

could lead to a false assignment to a single cell type only. We

reasoned that an HMM facilitates unbiased characterization of

the regulatory landscape, as it does not require pre-definition

of foreground and background cell types. Therefore, we applied

ScregSeg again, this time on cluster-collapsed accessibility pro-

files (i.e., with an input track for each of the 17 cell types defined

in Figure 1 instead of single cells). We used 30 states to charac-

terize the genome with 500-bp resolution (Figures 2A and S2A–

S2C). The state representation of the HMM identifies individual

regulatory programs such as accessibility specific to a single

or several clusters, as well as background accessibility (Figures

2B and S2A; discussed in further detail below). Compared to the

single-cell-based states identified by ScregSeg-fi (Figure 1), the

ScregSeg-pi (program identification) segmentation frequently
(B) Heatmap representing the association between states and clusters based on

overall read coverage per cluster, which accounts for read depth per cluster (see

with single-cell-type clusters (left) and multiple-cell-type clusters (right; full heatm

accessible in 4 neuronal cell-type clusters. Accessibility of 100 CREs with the hi

which the color represents the rank-based AUCell enrichment score for a given re

and 18, as indicated below the cluster-aggregated accessibility tracks, and the

UMAP territory representing neuronal cell types.

(C) Two examples of a cell-type cluster (tail bud andmidbrain) that are associated w

right-hand panel shows the per-cell distribution of accessibility at the gene body o

these states.
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led to a subdivision of ScregSeg-fi states, suggesting a refined

classification of genomic regions for accessibility patterns

across cell types (Figure S2D). ScregSeg-pi genome-wide seg-

mentation is the main resource of our study (Table S6).

To describe the ScregSeg-pi segmentation, we focus on

states that show strong association with cell clusters (Figures

2B and S2A). The model identified multiple states that each

show clear association with a single cell type (e.g., 29, 4, 14,

24, 10, 23, 21, and 20; Figure 2B). State enrichments around

ZFIN and scRNA-seq marker gene sets (Tables S3 and S4) are

consistent with those seen for the individual cell-type clusters

from our differential analysis (Tables S1 and S2). However, other

states capture CREs that are accessible in multiple cell types

(e.g., 5, 26, 25, 13, and 1; Figure 2B). For example, ScregSeg-

pi states 5 and 18 have a high association with all of the neuronal

clusters (clusters 2, 7, 9, and 12). One of the regions with the

highest probability of association with these states is around

the ascl1b locus (Figure 2B), a key neuronal lineage-determining

TF. As this locus is accessible in several clusters, it was not de-

tected by differential accessibility analysis, confirming that

ScregSeg-pi is able to capture both broadly acting and highly

specialized CREs.

Wefind evidence ofmultiple distinct regulatory programsacting

in a single cell type. For example, cell-type cluster 14 (Figure 1) is

enriched for markers of multipotent caudal precursors with spinal

cord, somite, and vascular differentiation potential during body

axis extension45–48 (Figure S2E). This cluster strongly associates

with three ScregSeg-pi states (25, 26, and 13) whose regions likely

constitute distinct regulatory programs behind the known endo-

thelial, neuronal, and myogenic trajectories for caudal precursors,

respectively, as evidenced by their shared accessibility with these

other cell types (clusters 1/11, 9, and 3/16, respectively) and state

marker gene annotations (Figure 2C; Tables S3–S5). In another

example among the neuronal cell types, cluster 12 (midbrain)

shows strong associations with 2 states (state 5 and 24). Screg-

Seg-pi state 5 regions are accessible in all of the neuronal clusters

except cluster 6 (differentiating neurons), and are enriched around

markers of the neurogenesis cascade, while the cluster 12-spe-

cific state 24 includes genomic regions strongly associated with

brain spatial identity49,50 (Figure 2C; Tables S3–S5). This example

suggests that it is possible to separate regulatory programs

driving differentiation of a specific cell lineage (neurogenesis)

from the spatial segregation of brain regions.

Single-cell accessibility measurements have the potential to

shed light on the sequence code of transcriptional regulation.

Motivated by the success of deep learning approaches for

modeling chromatin accessibility and extracting TF-binding
the log-ratio between the states’ emission probabilities and the (normalized)

STAR Methods). Display restricted to states showing the strongest association

ap in Figure S2A). ScregSeg-pi states 5 and 18 (highlighted) encompass CREs

ghest assignment probability for these states represented in UMAP space, in

gion.35,36 Loci around ascl1b have a high probability of assignment to states 5

ascl1b locus (highlighted in pink) shows a high normalized enrichment in the

ithmultiple ScregSeg-pi states (26, 25, and 13 and 5 and 24, respectively). The

f genes mapping to segments, with the top 100 logFC enrichments for each of
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Figure 3. Motif extraction via deep learning

(A) A convolutional neural network was used to extract sequence motifs that

are predictive of the expected state-read depth score, a combination of the

segmentation model’s state calls and the read depth across cells (see STAR

Methods).

(B) Extracted motifs agree with known motifs of transcription factors impli-

cated in regulating distinct cell-type-specific processes.
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events,11,51–53 we used convolutional neural networks to predict

individual states of the ScregSeg-pi segmentation from the un-

derlying DNA sequence- and extract-associated sequence mo-

tifs (Figure 3A; see STAR Methods). We find numerous cases in

which the extracted sequence patterns closely resemble motifs

of TFs that are known to be active in the cell type associated with

the state (Figures 3B and S3). These include a MyoD motif de-

tected in several states enriched for muscle-specific signal, an

ETS motif highly similar to that for FLI1 for the endothelial state

21, a GATA motif from the blood-enriched state 23, and in the

neural crest state 20, a motif that is likely associated with the mi-
crophthalmia-associated TF (MITF). These results orthogonally

validate our cell-type annotations and illustrate the potential for

ScregSeg-pi segmentation labels to assist future, more detailed

models of regulatory sequence code.
Bulk assays for chromatin architectures reflect single-
cell accessibility dynamics
While accessibility is a highly useful proxy to determine the loca-

tion of CREs, it does not provide information regarding their func-

tion or activity. To further characterize the regulatory landscape

of 24-hpf embryos, we performed bulk assays for 3 complemen-

tary chromatin modalities: (1) ChIP-seq for 5 histone PTMs

commonly used to define and discriminate promoters, en-

hancers, and gene bodies (H3K27ac, H3K4me1, H3K4me2,

H3K4me3, and H3K36me3), (2) in situ Hi-C to detect prominent

3D nuclear organization, and (3) chromatin-associated RNA as

a measure of nascent transcription (Figures 4A and S4A).

ChIP-seq signal for CRE-associated PTMs served as data to

infer the parameters of an HMM for chromatin state annotation54

with 11 states (Figure 4B; Table S7). These states (referred to

now as hPTM states) were further grouped into ‘‘promoter-

like,’’ ‘‘enhancer-like,’’ ‘‘other,’’ and ‘‘background’’ types ac-

cording to overall occurrence (Figure S4B) and spatial patterns

around accessible regions proximal and distal to annotated

TSSs (Figures S4C and S4D), which are consistent with previous

observations in humans, worms, and flies.54,55 ScregSeg-fi re-

gions (Figure 1) show enrichment for promoter-like and

enhancer-like hPTM states (Figure 4C; see STARMethods), sug-

gesting that current models of CRE histone modifications apply

also to zebrafish. ScregSeg-fi regions were classified into one of

the four hPTM state types (see STAR Methods), confirmed by

proximity to annotated TSSs (Figure S4E). Distributions of

nascent chromatin RNA-seq counts for regions, not overlapping

gene bodies, confirm the utility of our hPTM state types since

promoter-like states show elevated RNA levels compared to

background states even when located >5 kb from annotated

TSSs (Figure S4F; mean log10 counts 2.46 versus 1.93, p <

2.2 3 10�16, Welch’s unpaired t test, df = 797.72, n = 660 and

5,914). As the extent of H3K4 methylation likely reflects tran-

scription initiation rates within the associated CRE,55,56 this

observation suggests the presence of highly transcribed coding

or non-coding transcripts that have eluded annotation efforts,

perhaps due to short cytoplasmic half-lives and therefore only

being visible in preparations enriched for nascent RNA such as

our chromatin RNA-seq.

Previous studies, based on both bulk and single-cell-resolved

accessibility measurements11,12,57 have observed that pro-

moters show high constitutive accessibility across cell types,

whereas enhancers are more dynamic and cell specific. To

describe the cell type specificity of ScregSeg-fi regions, we

calculated the Shannon entropy12 for each region across the

17 identified cell types (Figure 1; see STAR Methods). Regions

with promoter-like hPTM states show a significant increase in

entropy scores compared to background states (mean 4.02

versus 3.89, respectively, p < 2.2 3 10�16, Welch’s unpaired t

test, df = 35,428, n = 11,438 and 24,149). This is reflected by their

accumulation among the most constitutive regions (Figure 4D),
Cell Genomics 2, 100083, January 12, 2022 7
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Figure 4. Accessibility dynamics are reflected in histone PTM states and 3D genome organization

(A) Browser shot around the dre-mir-9-5 locus showing strong concordance between (from top to bottom) SHAMAN 3D interaction score heatmap, Cicero co-

accessibility arcs for scores >0.28 (top 1% score cutoff; dashed line), histone PTM signals and promoter-like/enhancer-like HMM state calls, cluster-collapsed

sci-ATAC-seq signals, sci-ATAC-seq segmentation calls, H3K36me3 signal, and nascent chromatin-associated RNA signal. Co-accessibility arcs are clearly

enriched between strong interaction regions (orange/yellow in Hi-C heatmap), and these anchor points are clearly marked with enhancer-like and promoter-like

PTMs, as captured by the histone PTM states. Co-accessibility is also observed in the sci-ATAC-seq signal tracks and reflected in the similar coloring of the sci-

ATAC-seq segmentation calls.

(B) A heatmap representing histone PTM chromatin states learned. Each state is a multivariate Gaussian distribution and is plotted as the mean scaled ChIP-seq

signal for each PTM.

(C) 1-kb segments from the sci-ATAC-seq foreground are classified for their most representative histone PTM state (see STAR Methods), and plotted is the log2

ratio of class occurrence therein compared to class occurrence in all genomic 1-kb bins. The color scale represents the type of histone PTM state as determined

from genome-wide frequency and positional enrichment around annotated-TSS proximal and distal segments (Figures S4B–S4D). Stars represent significance

(legend continued on next page)
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and similar trends were observed when considering region prox-

imity to annotated start sites (Figure S4G).

Next, we integrated hPTM states and sci-ATAC-seq measure-

ments with 3D genome organization in the nucleus as measured

by in situ Hi-C58 (see STAR Methods). Gene promoters

frequently occur at the boundaries of so-called topologically

associating domains59,60 (TADs). A common method for deter-

mining TAD boundaries from Hi-C data is the insulation score,

which measures aggregate interactions that traverse a given

genome position.61,62 Therefore, we calculated insulation scores

genome-wide and summarized them for each accessible region.

We observed a significant decrease in insulation scores for re-

gions with promoter-like hPTM states compared to background

(mean �0.16 versus �0.025, respectively, p < 2.2 3 10�16,

Welch’s unpaired t test, df = 24,157, n = 11,020 and 23,201)

and a significant increase for enhancer-like regions compared

to background (mean 0.126 versus �0.025, respectively, p <

2.2 3 10�16, Welch’s unpaired t test, df = 48,081, n = 25,448

and 23,201). This is clearly visualized by the accumulation and

depletion of enhancer-like and promoter-like regions, respec-

tively, in highly 3D-interacting regions (Figure 4E), trends also

observed considering region proximity to annotated TSSs (Fig-

ure S4H). Furthermore, constitutively expressed genes are re-

ported to be enriched in TAD border regions.59,63–65 Therefore,

we explored the relationship between accessibility-based en-

tropy scores, insulation strength, and hPTM state, and observed

a significant trend for more insulated, promoter-like regions, and

not enhancer-like regions, to be more constitutively accessible

(Figures 4F and S4I).

Co-accessibility of pairs of genomic regions within a certain

linear genome distance may be an indication of 3D interactions.9

To confirm this trend in our dataset, we visualized co-accessi-

bility versus Hi-C interaction scores (Figures 4A and S4A; see

STAR Methods) and observed a positive relationship between

the two, which was especially significant at the high extremes

for pairs containing regions with promoter- or enhancer-like

hPTM states (Figures 4G and S4J). At example loci, we clearly

observe that strong co-accessibility scores (arcs) link both

high-scoring 3D interactions (heatmap) and regions with high

cell-type-specific accessibility (Figures 4A and S4A). Further-

more, these co-accessible/interacting regions are assigned to
from hypergeometric tests for enrichment (for states 1–12, p values are <2.23 10

0.981, 0.00000000641, <2.2 3 10�16, 1, and 1, and n values are 6,223, 12,441, 1

(D) Entropy scores (low = cell specific, high = constitutive) for foreground sci-AT

regions for each type of histone PTM state was counted and plotted.

(E) In situHi-C insulation scores for foreground sci-ATAC-seq regions were split in

PTM state was counted and plotted.

(F) In situHi-C insulation scores for foreground sci-ATAC-seq regions were split in

is plotted for the resulting promoter-like histone PTM regions, and the other 3 h

unpaired t test between the entropy scores for the 1st and 10th insulation decile

463.39, n = 2,068 and 374, respectively).

(G) SHAMANHi-C interaction scoremeans (full plot lines) or distributions (inset bo

apart andwithin the same TAD. Region pairs are split first by Cicero co-accessibilit

or both of the 2 regions (prom-cont), having no promoter-like histone PTM regions

is promoter-like or enhancer-like (other). Mean lines for all 100 percentiles are plo

100th percentiles are shown to give a better sense of the distributions. Counts

Welch’s unpaired t tests between the 100th and 75th percentiles (prom-cont: mean

cont: mean 19.87832 versus 10.80246, p < 2.2e�16, df = 7514.1, n = 3,829 and 3,

and 1,079).
common or related regulatory programs from our ScregSeg-pi

analysis (Figure 2), thus showing high concordance between

data types and consistency between analysis strategies.

Sci-ATAC-seq detects cell composition changes in
cloche/npas4l mutants and identifies novel cis-
regulatory elements of npas4l
Single-cell maps can characterize the cell dynamics underlying

mutant phenotypes and disease.66,67 We reasoned that,

conversely, profilingawell-characterizedzebrafishmutant pheno-

type could validate the sensitivity and accuracy of cell

type detection from our sci-ATAC-seq data and analysis pipeline.

A homozygous mutation in the zebrafish TF gene npas4l—histori-

cally referred to as cloche—results in the development of embryos

lacking almost all blood and endothelium, but with elevated cardi-

omyocyte numbers, while other tissues remain unper-

turbed.29,30,68 Harnessing the flexibility to multiplex samples with

sci-ATAC-seq, nuclei from homozygous mutant 24 hpf embryos

(npas4lbns297/bns297) and their phenotypically wild-type siblings

(npas4lbns297/+, npas4l+/+) were tagmented at distinct plate posi-

tions, thenpooledandprocessed together for all of thesubsequent

steps of library preparation (Figure S5A). We then compared the

cell composition of the mutant (npas4lbns297/bns297) and phenotyp-

ically wild-type sibling (npas4lbns297/+, npas4l+/+) samples, which

had been multiplexed and assayed together, by assessing their

relative contribution to the clusters derived from all of the batches.

Asexpected,wedetectedanear-total lossof nuclei fromendothe-

lium(cluster11) andblood (cluster8)cells inmutants (2.2%,p<83

10�10 and 0%, p < 4 3 10�15, respectively; versus 42% on

average; binomial test; Figure 5B). In contrast, the muscle cluster

16 and epidermal cluster 15 had significantly higher relative contri-

butions from mutant (npas4lbns297/bns297) nuclei (50.65%, p <

0.0002; and 55.41% p < 23 10�6; versus 42% on average; bino-

mial test), a previously unreported observation. Although the

detection of 2 muscle clusters (3 and 16) may have arisen from re-

maining local batch effects (Figure S1G), a significant increase in

muscle cells in themutant strain is still observedwhen considering

these clusters jointly (48.9%; p < 0.00057; binomial test).

We provide the systematic identification and classification of

CREs from our whole-embryo sci-ATAC-seq data as a resource

for the targeted exploration of regulation around individual
�16, <2.23 10�16, <2.23 10�16, <2.23 10�16, 1, <2.23 10�16, <2.23 10�16,

2,871, 6,873, 6,951, 9,283, 12,875, 10,610, 8,231, 11,249, 8,386, and 46,079).

AC-seq regions were split into deciles, and within each decile the number of

to deciles, and within each decile the number of regions for each type of histone

to deciles and then split according to their histone PTM type. The entropy score

istone PTM types can be seen in Figure S4I. p value is the result of a Welch’s

s with promoter-like chromatin states (mean 4.028477 versus 4.007515, df =

xplots) are plotted for pairs of sci-ATAC-seq foreground regions that are >25-kb

y score percentiles and then by having a promoter-like histone PTMstate in one

but having 1 or 2 enhancer-like PTM regions (enh-cont), or where neither region

tted for ease of visualization, and boxplot insets for the 1st, 25th, 50th, 75th, or

for each group can be seen in Figure S4J. Stars represent significance from

26.62588 versus 9.33010, p < 2.2e�16, df = 2,458.4, n = 1,132 and 1,402; enh-

740; other: mean 8.958823 versus 9.253661, p = 0.6012, df = 2201.4, n = 1,156

Cell Genomics 2, 100083, January 12, 2022 9
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Figure 5. Application of sci-ATAC-seq to npas4l embryos reveals unexpected cell-type-specific regulation

(A) Representative images of npas4l wild-type/heterozygous and homozygous mutants at 24 hpf exhibiting fli1a:GFP expression.

(B) UMAP representation of the cell-Topic matrix from cisTopic on 8,976 cells, 3,769 homozygous npas4lmutants, and 5,207 siblings. Percentages represent the

proportion of mutant cells relative to all mutant and sibling cells per density cluster.

(C) Summary chromatin accessibility from aggregated cells for each cluster (pseudo-bulks) at the npas4l locus. Three cell-type-specific peaks of accessibility are

highlighted as putative enhancers enh1, enh2a, and enh2b �8–10 kb from the npas4l TSS.

(legend continued on next page)
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genes. As an example, we observed two distal regions within 30

kb of the npas4l TSS annotated as ScregSeg-pi states 21 and 25.

These regions were accessible in blood, endothelium, and

caudal precursors (cluster 14)—cell types that were depleted

or reduced in npas4lbns297/bns297 embryos (Figure 5B)—and

lacked long-range interactions with other genomic loci showing

equivalent cell-type-specific accessibility (Figures 5C–5F and

S5B). We therefore named these putative enhancers of npas4l

enh1, enh2a, and enh2b. To investigate the putative binding of

TFs to these candidate npas4l enhancers, we scanned their un-

derlying genomic sequences against the full JASPAR vertebrate

database69 (Figures 5D and S5C–S5E). We found significant

motif matches for blood and mesoderm regulators the KLF fam-

ily, the GATA family, and LBX241,71–74 in the enh1 sequence; RFX

family motifs75 and ciliogenesis76 and mesodermal regulators

TEAD2,77 NOTO,78 EVX2,79 and HOXA5 in enh2a; and mesoder-

mally expressed TFs RXRG and FOXC280–82 and blood regula-

tors GATA1::TAL1 in enh2b.

Given the clear association between the measured cell-type-

specific accessibility for enh1 and the known phenotypes of

npas4l loss of function, we chose to evaluate its functional activ-

ity by cloning 364 bp of the underlying DNA sequence into a re-

porter construct containing an E1b minimal promoter and EGFP

cassette,83,84 generating stable transgenic lines, and examining

EGFP expression at 24 hpf. The resulting lines exhibited repro-

ducible EGFP activity in endothelial and blood cells in agreement

with the cell-type-specific accessibility of this element and the

known phenotypes of npas4l loss of function (Figure 5G). As

such, we demonstrated the utility of our resource in identifying

regulatory elements while also predicting their localized activity.

Moreover, sequence analysis can identify candidate upstream

transcriptional regulators, which, in the case of npas4l, may op-

erate in distinct, cell-type-specific combinations.

DISCUSSION

We present a multimodal resource for the zebrafish community,

which integrates sci-ATAC-seq with bulk histone PTMs and Hi-C

data to achieve a genome-wide classification of the regulatory

architecture determining transcriptional activity in the 24-hpf

embryo. Using our new tool, ScregSeg, we define regulatory pro-

grams specific to 1 or more of 17 identified cell types and the

prevalent sequences underlying these programs. We find that

promoters aremostly constitutively accessible and tend to occur

inmore insulated 3D neighborhoods and that co-accessible CRE

pairs tend to interact in 3D. Sci-ATAC-seq profiling of npas4l/

cloche mutants validated the sensitivity of our approaches and

identified unexpected changes in muscle and epidermal cell

populations. Lastly, our ScregSeg-pi classification of multi-

cell-type-specific CREs led to the discovery of a novel functional
(D) Motif detection in the enh1, enh2a, enh2b sequences with JASPAR motifs.69

enrichedmotif sequences are displayed, collapsed per family. Bold black represen

less frequent variations of the motif sequence.

(E) Per-cell distribution of accessibility at putative npas4l enhancer enh1 (highlig

(F) Per-cell distribution of accessibility at putative npas4l enhancer enh2a and en

(G) Enh1E1b:GFP expression at 24 hpf. (i, ii) Single plain optical cross-section th

Scale bars: 200 mm (A and G), 20 mm (i), 10 mm (ii). DA, dorsal aorta, PCV, poste
enhancer close to npas4l with blood and endothelial specificity.

This resource constitutes a solid foundation for future studies in

developmental cell biology, systems regulatory genomics, and

computational data science, with an immediate direct impact

on transgenic reporter gene design, candidate identification

for perturbation studies, and regulatory sequence annotation

for further developments of predictive models. We encourage

the exploration of our data and analyses through the inter-

active browser (https://scbrowse.mdc-berlin.de/) and UCSC

genomebrowser hub (http://genome.ucsc.edu/cgi-bin/hgTracks?

db=danRer11&hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/

ohler/scipipe_v4/hub.txt).

In the wake of advances in scATAC-seq experimental

methods, a number of analysis strategies have been developed

that depend on predefined features and/or focus on various as-

pects such as cell-type clustering, motif integration, or co-

accessibility.9,10,35,85,86 We developed ScregSeg, a novel HMM

segmentation approach for analyzing scATAC-seq data, to

address (1) the identification of informative features from sin-

gle-nucleus data (e.g., regions with variable accessibility dy-

namics) for downstream analysis and (2) the characterization of

regulatory programs from cluster-aggregated data, referred to

as ScregSeg-fi and ScregSeg-pi, respectively. We show that

genomic features derived by ScregSeg-fi facilitate dimension-

ality reduction, leading to clearly separated cell-type clusters.

Benchmarking analysis of ScregSeg-fi suggested that it

achieves comparable or sometimes slightly better performance

relative to iterative LSI (Figures S1D and S1E; Note S1). Screg-

Seg-pi analyses identify complex combinatorial accessibility

profiles in an unsupervised and unbiased manner (Figure 2).

This enabled us to define distinct groups of CREs accessible in

cell types that likely act as separable programs, such as the

neuronal and mesodermal fates in caudal precursors or the

spatial distribution and lineage progression among neuronal

clusters. We conducted biological validations, including

exploring accessibility profiles at known marker genes, motif

analysis within ScregSeg-pi states, integration with other regula-

tory genomic data types, profiling of a genetic mutant (npas4l/

cloche) with known cell loss phenotype, and transgenic reporter

analysis of a small multi-tissue enhancer. These validations po-

sition ScregSeg as an important new addition to the toolbox of

scATAC-seq analysis methods.

Our integration of single-cell datasets with bulk approaches

enabled the identification of global trends and multimodal regu-

latory principles while addressing the issue of bulk signals being

dominated by the most prevalent cell types. Enhancers and pro-

moters share many common characteristics, and the traditional

mark distinguishing them, H3K4me3, may simply reflect higher

transcription initiation rates.2,56,55 Our analyses show regions

with H3K4me3-containing hPTM states to be often constitutively
Motif scanning at the specific enhancer was with FIMO70 and the 20 highest

ts a core sequencematch shared across thewhole family, and gray represents

hted in C), represented in UMAP space.

h2b (highlighted in C), represented in UMAP space.

rough the axial vessels.

rior cardinal vein.
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accessible, suggesting a functional distinction for CREs with this

mark. We show that constitutively accessible CREs with pro-

moter-like hPTM states are associated with highly 3D-insulated

regions, refining previous observations that TAD borders are

associated with constitutively expressed genes during zebrafish

development.65 Since co-accessible CRE pairs within the same

TAD tend to interact in 3D space (Figure 4), our data and ana-

lyses suggest the potential of assigning a given zebrafish CRE

to its target gene if the promoter is not constitutively accessible,

as shown previously in a mammalian system.9

The novel cloche/npas4l phenotypes highlight the ability of

single-cell methods to identify changes in cell numbers during

development that may otherwise remain elusive with traditional

cell biology methods. The gain in muscle cluster 16 suggests

that the lineage commitment of npas4l mutant mesodermal pre-

cursors is redirected from hematovascular to somite-muscle cell

types, resembling a gain of muscle expression from a npas4l

mutant reporter system (data not shown), and a phenotype

observed upon loss of etsrp, a direct target gene of npas4l.87,88

Accordingly, ScregSeg-pi identified a regulatory program, state

25, that shows accessibility specific to tailbud mesodermal pre-

cursors, pharyngealmesoderm, and endothelial cells (Figure 2B).

An increase in an epidermal population is unprecedented and

will require further investigation.

We leveraged our highly resolved CRE accessibility profiles to

explore the npas4l locus, where we observe new putative en-

hancers—enh1, 2a, and 2b—that exhibit cell-type specificity.

The specificity of enh2a/b to caudal precursors supports the

importance of npas4l in regulating their fate, and we speculate

that they may regulate npas4l early in the hematovascular fate

decision. Meanwhile, the accessibility and validated reporter ac-

tivity of enh1 in mature blood/endothelial populations, in which

its RNA levels are not detectable, supports a purported negative

feedback regulation of the transient expression of npas4l.30 Such

a ‘‘cloche’’ enhancer activity has eluded the field for years and

will prove a powerful tool to further dissect regulatory networks

active in early mesoderm specification. That we were able to

detect this enhancer activity in this study highlights the resolution

and accuracy of our resource to annotate regulatory activities for

follow-up studies.

Limitations of the study
The focus of this study was to combine single-cell-resolved and

multimodal bulk genomics data using advanced computational

methods to gain new insights into the zebrafish regulatory

genome. Therefore, we limited our samples to a single develop-

mental stage at whichmanymodalities of genomics assays were

performed. Increasing the spatial and temporal resolution of

such data will expand our understanding of CRE dynamics and

function.

Bulk ChIP-seq, Hi-C, and chromatin RNA data were generated

from whole embryos to improve de novo annotations of the ze-

brafish genome and identify cross-modality regulatory princi-

ples. As similar assays become more commonly performed at

single-cell resolution, and from the same single cells, studies

will be able to better characterize the relationships between

the dynamics of CRE accessibility, histone PTMs, 3D chromatin

organization, and nascent RNA production.
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The number of cells captured by sci-ATAC-seq was sufficient

to identify cell population-specific CREs and to identify changes

in cell-type populations associated with the mutant. However,

larger sample sizes would be required to reliably resolve cell-

type-specific differences in accessibility between the mutant

and wild-type samples.
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Antibodies

H3K4me1 abcam Cat#ab8895;RRID:AB_306847

H3K4me2 abcam Cat#ab32356;RRID:AB_732924

H3K4me3 abcam Cat#ab8580;RRID:AB_306649

H3K27ac abcam Cat#ab4729;RRID:AB_2118291

H3K36me3 abcam Cat#ab9050;RRID:AB_306966

Chemicals, peptides, and recombinant proteins

Complete Protease Inhibitor Roche Cat#11697498001

SUPERase-In RNase Inhibitor Thermo Fisher Scientific Cat#AM2696

Trizol Thermo Fisher Scientific Cat#15596018

IGEPAL CA-630 Sigma Cat#I8896

HindIII NEB Cat#R3104L

Biotin 14-dCTP Invitrogen Cat#19518-018

T4 DNA ligase Invitrogen Cat#15224-041

Hind III NEB Cat#R0104L

Klenow NEB Cat#M0210L

Klenow Exo NEB Cat#M0212S

T4 DNA polymerase NEB Cat#M0203L

Hercules polymerase Agilent Cat#600675

Pronase (Protease from Streptomyces

griseus type XIV)

Sigma-Aldrich Cat#P5147-1G

DSP Sigma Aldrich Cat#D3669

Tn5 MDC Protein Production & Characterization

Platform, according to Picelli et al., 201489
N/A

DAPI (4’-6-Diamidino-2-Phenylindole

Dihydrochloride)

Sigma-Aldrich Cat#D9542-1MG

EDTA, pH 8.0, ultra pure Thermo Fisher Scientific Cat#15575-020

EB buffer QIAGEN Cat#19086

BSA New England Biolabs (NEB) Cat#B9001S

SDS N/A N/A

Triton X-100 N/A N/A

NEBNext Ultra II Q5 Master Mix New England Biolabs (NEB) Cat#M0544L

SYBR Green I Lonza Cat#50513

Agencourt AMPure XP beads Beckman Coulter Cat#A63881

Phusion HF PCR Mastermix New England Biolabs (NEB) Cat#M0531S

BglII New England Biolabs (NEB) Cat#R0144S

Gibson Assembly Master Mix New England Biolabs (NEB) Cat#E2611L

mMESSAGE mMACHINE Thermo Fisher Cat#AM1345

Tricaine Sigma Aldrich Cat#304506

Deposited data

Raw data This paper GEO: GSE152423

Processed data This paper https://bimsbstatic.mdc-berlin.de/hubs/

ohler/scipipe_v4/hub.txt)

Processed data This paper https://scbrowse.mdc-berlin.de/
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Experimental models: Organisms/strains

Zebrafish: AB/TL Max Delbr€uck Center Zebrafish facility N/A

Zebrafish: Tg(fli1a:nls-GFP)y7 npas4lbns297 Crossed in Didier Stainier lab from Marass

et al., 2019,88 Roman et al., 2002, 90
N/A

Sea urchin: S. purpuratus David Garfield lab N/A

Oligonucleotides

Custom transposon oligonucleotides; P7

PCR primers; P5 PCR primers and

sequencing primers for sci-ATAC-seq

Cusanovich et al.,10 Nature, 2018; Table

S12

N/A

Forward primer sequence for cloning Enh1:

50- AGATGGGCCCTCGAGAGATCTC

ACTCTTCAGTCTTCAGTG

Eurofins N/A

Reverse primer sequence for cloning Enh1:

50-CCCTCTAGAGTCGAGAGATCTT

AATGTGTCCTGCTTCTGC

Eurofins N/A

Recombinant DNA

E1b-GFP-Tol2 Birnbaum et al., 201283; Li et al., 200991 Addgene plasmid 37845

pT3TS-Tol2 Balciunas et al., 200692 N/A

pTXB1-Tn5 Picelli et al., 201489 Addgene plasmid 60240

Software and algorithms

BEDTools (v2.27.1) Quinlan and Hall, 201093 http://bedtools.readthedocs.io/en/latest/

MEME Suite (v4.11.3) Grant et al., 201170 meme-suite.org

samtools (1.9) Li et al., 200991 N/A

ZenBlue software package Zeiss https://www.zeiss.com/microscopy/int/

products/microscope-software/zen.html

flexbar (v3.4) Dodt et al., 201294 N/A

bowtie2 (2.3.4.3) Langmead and Salzberg, 201295 N/A

ScregSeg This paper N/A

cisTopic (0.2.2) Bravo Gonzalez-Blas et al., 201935 N/A

UMAP (0.2.2.0) N/A https://cran.r-project.org/package=umap

densityClust (0.3) N/A https://cran.r-project.org/

package=densityClust

DESeq2 (1.24.0) Love et al., 201496 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

scVI (0.5.0) Lopez et al., 201897 N/A

janggu v0.9.4 Kopp et al., 202098 N/A

keras v2.2.4 Keras, 201599 N/A

TOMTOM (5.0.5) Bailey et al., 2009100 N/A

snakemake (5.2.4) Mölder et al., 2021101 N/A

UMI-tools N/A N/A

deepTools (3.1.3) Ramı́rez et al., 2016102 N/A

JAMM Ibrahim et al., 2015103 N/A

histone PTM ChIP HMM Duttke et al., 201554; Ibrahim et al., 201855 https://github.com/mahmoudibrahim/

hmmForChromatin

FASTX-toolkit N/A http://hannonlab.cshl.edu/fastx_toolkit/

Bowtie1 Langmead et al., 2009104 N/A

STAR Dobin et al., 2013105 N/A

Cicero Pliner et al., 20189 https://cole-trapnell-lab.github.io/

cicero-release/docs_m3/#installing-cicero
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Juicer Durand et al., 2016106 N/A

HiTC Servant et al., 2012107 N/A

Insulation scores Crane et al., 201561 https://github.com/dekkerlab/

cworld-dekker

SHAMAN Cohen et al., 2017108 https://bitbucket.org/tanaylab/shaman/

src/default/

ggplot2 Wickham, 2011109 N/A

CoolBox N/A https://github.com/GangCaoLab/CoolBox

Other

BD FACS Aria III BD Biosciences www.bdbiosciences.com

Qubit dsDNA HS Assay Thermo Fisher Scientific Cat#Q32854

Bioanalyzer DNA High Sensitivity Kit Agilent Cat#5067-4626

NextSeq 500 Sequencing System Illumina https://www.illumina.com/

LSM800 observer confocal microscope Zeiss https://www.zeiss.com/corporate/int/

home.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Scott

Allen Lacadie (scott.lacadie@mdc-berlin.de).

Materials availability
Plasmids generated in this study are available upon request.

Data and code availability
The manuscript is accompanied by an interactive web-browser for single-cell ATAC-seq data at https://scbrowse.mdc-berlin.de. In

addition, we provide a track hub at http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&hubUrl=https://bimsbstatic.

mdc-berlin.de/hubs/ohler/scipipe_v4/hub.txt.

All raw data is available on the NCBI Gene Expression Omnibus (GEO) with accession GSE152423. The processed data is available

as a UCSC hub at http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&hubUrl=https://bimsbstatic.mdc-berlin.de/hubs/ohler/

scipipe_v4/hub.txt.

The source code for ScregSeg is available at https://github.com/BIMSBbioinfo/scregseg.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All zebrafish maintenance and procedures were conducted in accordance with standard laboratory conditions and animal proced-

ures approved by the local authorities (LAGeSo, Berlin, Germany).

METHOD DETAILS

Embryo preparation for sci-ATAC-seq
For wild-type experiments the AB/TL strain was used. All zebrafishmaintenance and procedures were conducted in accordancewith

standard laboratory conditions and animal procedures approved by the local authorities (LAGeSo, Berlin, Germany). Timed matings

were set up between AB/TL adults and embryos were maintained at 28.5�C for 24 hpf from the time of fertilization. Staging and con-

sistency within the clutch was confirmed by morphological criteria.32

Chorions were removed by incubating in 15mL pronase E at 1mg/ml for 10min with continuous shaking. Pronase was removed by

five washes with 200 mL egg water (60 mg/ml Ocean salt (Red Sea), 3 mM Methylene blue). For the first two wild-type experiments,

embryo yolks were removed by placing 100 embryos in 500 ml de-yolking buffer (55mM NaCl, 1.8mM KCl, 1.25mM NaHCO3) and

pipetting 10 times with a P100 pipette. Embryos were left to sink to the bottom, then de-yolking buffer was removed and 5 washes

with egg water were performed. Batches of 25-50 embryos were distributed into 1.5ml eppendorf tubes, egg water removed and

snap frozen in liquid nitrogen and maintain at �80�C.
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Embryos with mutated npas4l alleles were obtained from intercrosses of npas4lbns297 heterozygotes in a Tg(fli1a:nls-GFP)y7 back-

ground88maintained under animal protocol B2/1218. Homozygous npas4lmutant (npas4lbns297/bns297) embryos were separated from

heterozygous and homozygous wild-type siblings (npas4lbns297/+, npas4l+/+) based on the loss of fli1a-GFP+ endothelial cells 24

hours after fertilization. Chorions were removed but yolks were left intact. Embryos were flash frozen in liquid nitrogen, stored at

�80�C and transported on dry ice.

Nuclei preparation from zebrafish embryos for sci-ATAC-seq
Embryos were thawed in 2 mL of cold lysis buffer7 (CLB; 10 mM Tris-HCL, pH 7.5, 10 mMNaCl, 3 mMMgCl2, 0.1% IGEPAL CA-630)

supplemented with protease inhibitors (Complete Protease Inhibitor Cocktail, EDTA-free, Roche). Embryos were homogenized in a

Dounce homogenizer then incubated in cold lysis buffer at 4�C for 1 hour. Nuclei were then strained through 35 micron strainer caps

of Corning Falcon test tubes (Thermo Fisher Scientific).

Nuclei preparation from sea urchin embryos for sci-ATAC-seq
Sea urchin embryos were S. purpuratus, wild caught in Monterey, California, USA. Embryos obtained 30-48 hpf were fixed for 30 min

in 5 mM DSP then quenched with 20 mM Tris pH 7.4 and stored at 4�C. For nuclei preparation, fixed embryos were thawed in 10 mL

HB buffer (15 mM Tris, pH 7.4, sucrose 0.34 M, NaCl 15 mM, KCl 60 mM, EDTA 0.2 mM, EDTA 0.2 mM) and then homogenized in a

15 mL Dounce homogenizer 20x with a loose pestle, and 10x with a tight pestle. The homogenate was filtered through Miracloth

(Merck Millipore) and rinsed with HB buffer, followed by centrifugation at 3500 g for 5 min at 4�C, discarding the supernatant, twice.

The pelleted nuclei were resuspended in cold PBS with 0.1% Triton X-100 and filtered through a 20 mM Nitex membrane, then spun

down and resuspended in 1ml CLB.

Tn5 transposome preparation for sci-ATAC-seq
Tn5 was generated by the MDC Protein Production & Characterization Platform from Addgene plasmid #60240 according to Picelli

et al.89 at 1.95mg/ml with the followingminor modifications: buffers lacking Triton X-100 were used for the chitin column and dialysis,

and final storage was in 50 mM HEPES-KOH pH 7.2, 0.8 M NaCl, 55% Glycerin, 0.1 mM EDTA, 1 mM DTT. For each experiment 96

uniquely indexed transposon complexes were generated according to Amini et al.110 with minor adaptations. First, twenty uniquely

indexed transposons were made by annealing a uniquely indexed oligonucleotide (Sigma-Aldrich) containing a Tn5 mosaic end

sequence at its 30 end, to a complementary universal 50-phosphorylated 19 bp mosaic end oligonucleotide. Oligonucleotides

were mixed in a 1:1 molar ratio, giving a final concentration of 100 mm under the thermocycling conditions: 95�C for 5 minutes,

cool to 65�C decreasing 0.1�C/second, 65�C for 5 minutes, cool to 4�C decreasing 0.1�C/second. Each annealed oligonucleotide

transposon was mixed with Tn5 (1.95 mg/ml) at a ratio of 0.143:1 and incubated for one hour at 25�C. Of the 20 indexed oligonucle-

otides, 8 contained an adaptor that could be bound by indexed Illumina P5 primers (i5 oligonucleotides) and 12 contained an adaptor

that could be bound by indexed Illumina P5 primers (oligonucleotide sequences were obtained from supplementary information of

Cusanovich et al.10). Tomake 96 unique transposome complexes each i5 transposome could bemixedwith each i7 transposome at a

1:1 ratio in columns 1-12 and rows A-H of a 96 well plate. Transposome complexes were stored at �20�C.

sci-ATAC-seq implementation
Our protocol for generating sci-ATAC-seq data was largely following Cusanovich et al.,10,11 with some modifications. Purified nuclei

were stained with DAPI (4 mM) and 2500 were sorted into each well of a 96 well plate containing 19 ml of tagmentation buffer (10mM

TAPS-NaOH, pH 8.8, 5 mMMcCl2, 10% DMF, 6.6 mM Tris-HCl, 6.6 mM, 0.066% IGEPAL CA-630) using a BD FACS Aria III (BD Bio-

sciences). For tagmentation, 1 ml of uniquely barcoded Tn5 transposome was added to each well of the 96 well plate containing tag-

mentation buffer and nuclei. Plates were spun for 30 s at 500 x g and then incubated for 30 minutes at 37�C. Following tagmentation,

40 ml of 40 mM EDTA supplemented with 0.3 mM spermidine was added to each well and the plate incubated for 15 minutes at 37�C.
Nuclei and buffer from all wells were pooled in a reagent reservoir and passed through a 35 micron strainer into Corning Falcon test

tubes (Thermo Fisher Scientific). DAPI was added and nuclei were sorted again with a BD FACS Aria III. For the second sort, 25 nuclei

were sorted into each well of 96-well plates (8-10 plates per experiment) containing 12 ml of nuclear lysis buffer (11 ml of EB buffer

(QIAGEN) supplemented with 0.5 ml of 100X BSA and 0.5 ml of 1% SDS). The 96-well plates from the second sort were stored at

�20�C until ready for PCR amplification.

Before PCR amplification, each plate was incubated at 55�C for 15 minutes then 1 ml of 12.5% Triton X-100 added per well to

quench the SDS. To each well a unique combination of indexed P5 and P7 PCR primers10 was added (0.5 mM final concentration

each), 10 ml of NEBNext Ultra II Q5 Master Mix (NEB) then immediately amplified in a thermocycler under the conditions: 72�C for

3 minutes, 98�C for 30 s, 18 cycles: 98�C for 10 s, 63�C for 30 s, 72�C for 1 minute, hold at 4�C. Before amplifying a whole plate,

the number of cycles was determined from several test wells that were sorted into a separate plate and monitored by qPCR with

the addition of SYBR green to the PCR mix. In all experiments here 18 cycles were used.

After PCR amplification, 96-wells of each plate were pooled, cleaned up with DNA Clean & Concentrator-5 columns (Zymo) and

then large fragments (above 1000 bp) removed with 1X AMPure beads (Beckman Coulter). The concentration of libraries was

measured with Qubit dsDNA HS Assay (Thermo Fisher Scientific) and quality checked with Bioanalyzer DNA High Sensitivity Kit

(Agilent).
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Sequencing of sci-ATAC libraries
Equimolar libraries from each 96 well plate were pools and sequenced with NextSeq500 (Illumina) High Output, 23 150 bp loading at

a concentration of 1.6 pM. Custom primers10 and a custom sequencing recipe110 were used to sequence the following read lengths:

110 bp + 45 bp + 110 bp + 39 bp (Read 1 + Index 1 + Read 2 + Index 2).

Sci-ATAC-seq analysis
Preprocessing

The raw sequences were trimmed using flexbar (v3.4)94 with parameters ‘-u 10–min-read-length 50’ using the adaptor sequence

‘CTGTCTCTTATACACATCTG’. Reads were mapped against danRer11 using ‘bowtie2 -X 2000–no-mixed–no-discordant–very-sen-

sitive’. Chromosomes whose names contain the patterns chrM, _random and chrUn were removed from the analysis and only reads

with mapping quality of at least 10 were retained. We corrected sequencing errors in barcodes by mapping the sequenced barcodes

against the reference barcode universe using bowtie2with default parameters. Only barcodes with amapping quality of at least 5 and

no more than two mismatches with the reference barcodes were retained. Finally, reads were deduplicated within each barcode us-

ing a custom script. A 1:1 mixture of zebrafish and sea urchin nuclei were added to a subset of wells for the first barcoding (tagmen-

tation) step in order to detect barcode collision events.

The barcode collision rate was estimated as described previously using the Birthday paradox.8

The Scregseg model

Inspired by chromatin segmentation methods,26 we developed a hidden Markov model (HMM), called ScregSeg, to segment the

genome according to distinct (cross-cell) accessibility profiles. The model takes as input a count matrix representing genome-

wide equally sized tiles by either single-cell or cluster-collapsed accessibility counts. Distinct cross-cell accessibility profiles are

captured using Dirichlet-Multinomial emission probabilities which represent the states of the model. We utilize the Baum-Welch al-

gorithm to fit the model parameters starting from random initial weights. Multiple restarts are used to avoid poor local minima. After

having fit the model, the genome is segmented in the process of state calling using the Viterbi algorithm. The posterior decoding

probability per region was computed using the forward-backward algorithm.

Defining the regions of interest using ScregSeg-fi

We binned the genome in 1 kb regions and constructed an R x C count matrix where R denotes the number genome-wide 1kb tiles

and C denotes the number of cells as follows: Fragments were counted at the midpoint and each entry of the matrix was trimmed to

be at most four to mitigate the influence of spurious artifacts. To exclude poor quality cells, we only retained barcodes with at least

1000 and at most 30000 fragments, leading to 21136 barcodes. The resulting count matrix was used as input for Scregseg for the

purpose of feature identification (Scregseg-fi).

We utilized an HMM with 50 states and fitted the model for 300 iterations. To avoid poor local optima, we restarted the training

process seven times using different random initial weights and eventually used the model that obtains the best overall log-likelihood

score.

State callingwas performed using the Viterbi algorithm.Only states that each cover atmost 1.5%of the genomewere retained. These

rare states are considered foreground states, while the remaining stateswere ignored for the downstreamanalysis (e.g., ambiguous and

background states). All regions associated with the foreground states and with posterior decoding probability of at least 0.9 were

considered while low confidence regions were eliminated. Finally, we merged bookended regions if they belonged to the same state.

This process gave rise to 71,550 regions which were used for the downstream analysis dimensionality reduction step (see below).

To compute the cell-state association heatmap, we determined the fraction of state calls of state i overlapping with accessible re-

gions for a given cell j aij = ð# state i calls overlapping accessible regions in cell j =# number of accessible regions in cell jÞ,which

represents the observed state frequency associated with cell j. Subsequently, we compute the cell-state association as

logðaij =biÞwhere bi denotes the overall state frequency of state i across the genome (Figure 1C). That is, states that occur at a higher

frequency in a given cell relative to the overall state frequency are considered to be enriched in the cell.

Dimensionality reduction, batch correction and clustering

Weconstructed a countmatrix using the cells across all samples and using the regions of interest defined by ScregSeg-fi (see above).

The count matrix was subjected to filtering requiring at least one fragment per region across cells and at least 200 fragments per cell

across the ROI regions which led to 23008 barcodes being used for the remaining analysis. We fitted a Latent Dirichlet Allocation

model with cisTopic using 30 topics, collapsed Gibbs sampling, a burn-in of 500, and 1000 sampling iterations.35

The resulting cell-topic matrix was z score-normalized, and sample specific batch effects were corrected by regressing out the

sample-specific information labels using a linear regression model. That is, fitted linear regression models using the ‘lm’ function

in R to predict the topic score for each topic t across cells based on the categorical batch label. Afterward, a batch corrected

cell-topic matrix is obtained by using the residuals from the model prediction (e.g., the remaining information that cannot be ex-

plained by the batch label).

The cell-topic matrix was further used to compute a 2DUMAP embedding. We performed density clustering on the UMAP to group

together cells in distinct subpopulations.

We created pseudo-bulk signal tracks based on cells within each density cluster.

Given some query regions (e.g., known marker genes), cell-specific enrichment scores were determined using the AUCell score

provided by cisTopic.35 These enrichment scores were used to highlight marker accessibility in the UMAP.
Cell Genomics 2, 100083, January 12, 2022 e5



Resource
ll

OPEN ACCESS
Differential peak calling

Cluster-specific marker regions were determined by performing one-versus-all differential accessibility analyses using DESeq296 for

each density cluster in turn using the regions of interest identified by ScregSeg-fi.

For each cluster, regions with aminimum log2-fold change of one and an adjusted p value of atmost 10%were reported as cluster-

specific regions. In addition, the top 500 regions with respect to the log-fold change were reported regardless of the above con-

straints to alleviate the effects of insufficient statistical power for calling regions associated with small cell clusters.

Extracting ZFIN-derived annotation features

We compiled body-part specific gene sets using annotation from the ZFIN database.38 To this end, we downloaded the gene-body-

part association and extracted body-parts present in the 24 hpf developmental stage. We only used annotation data from the pub-

lication ids ZDB-PUB-040907-1, ZDB-PUB-051025-1 or ZDB-PUB-010810-1 to ensure consistent quality and remove body parts

with less than 6 genes.

Extracting scRNA-seq-derived marker genes

We compiled gene sets based on cluster-specific genes for published single-cell RNA-seq data.25 To this end, we downloaded the

single-cell RNA-seq count matrix along with the cell clustering information from Wagner et al.25 We employed scVI97 to determine

one-versus-all differential gene expression for each cluster in turn based on the 24 hpf single-cell data. We use the top 20 most dif-

ferential genes per cluster to constitute the scRNA-seq-cluster gene set.

Gene enrichment analysis per cluster

For each density-cluster, we determined whether the differentially accessible regions are significantly enriched around the gene sets

defined by ZFIN and scRNA-seq data using a hypergeometric test. To this end, we mapped each differentially accessible region to

the nearest TSSgene and ensured that each gene was counted only once, in case of multiple marker regions mapping to the same

gene. Then we employed a hypergeometric enrichment test to assess whether the differential regions are associated with the gene

sets using

��
n
k

��
M�n =N�kÞ=ðM =NÞ

�
where k denotes the number of DA regions associated with the gene set, n denotes the

geneset size (number of genes in the set), N denotes the number of DA regions associated with any gene and M denotes the total

number of genes.

Genome segmentation for identifying regulatory programs - ScregSeg-pi

To define input signal tracks, we binned the genome in 500 bp regions. Then we computed a count matrix containing pseudo-bulk

(aggregated) fragment counts across the genome with size (number of 500bp regions) x (number of density clusters).

We applied the ScregSeg segmentation model with Dirichlet-Multinomial emission probabilities for segmenting the genome simi-

larly as described above.

We fitted a model with 30 states for 100 iterations using the Baum-Welch algorithm. As above, we repeated model fitting seven

times with different random initial weights to minimize the chance of obtaining a poor local optimum. Finally the model with the

best log-likelihood score was selected.

We visualize the state-cluster association by normalizing the parameters of the states (that define the emission probabilities) by the

total read coverage of the clusters (as large clusters are expected to be covered by more reads than small clusters). Specifically, the

parameters for the emission probabilities (expected sufficient statistics) reflect the number of reads in cluster c that are associated

with regions of state s, which we normalize by the total number of reads in state s to define the state-specific coverage profile Pcs =

ðnumber of reads in c and s =number of reads in sÞ. The background coverage describes the number of reads per cluster relative to

the total number of reads (regardless of the state assignment), Pb = ðnumber of reads in c =total number of readsÞ. We define the

state-cell association as logðPCS =PbÞ.
Feature enrichment score per states

In order to assign biological function to states, we developed a statistical test based on the abundance of state calls around the TSS

of genes in the gene sets. To this end, we counted the number of state calls oi for each state i across the region defined by the gene

set.

The expected number of state counts in a region of the same size N was computed ei =Npi where pi denotes the stationary prob-

ability of state i of the segmentation model.

We used the enrichment score ððoi � eiÞ2 =e2i Þ if ðoi � eiÞ>0. Otherwise, the score is zero.

The feature enrichment scores were used to associate functional gene sets with states and for visualization purposes. As gene sets

we use the ZFIN and scRNA-seq extracted marker genes as described above and we expanded the regions around the TSSs by ±

10k.

Query marker genes for a given state

In order to extract marker genes, we utilized the log-ratio between the proportion of observed state calls covering the gene body ± 10

kb and the proportion of state calls expected by chance in a region of the same size based on the stationary distribution of the HMM.

A high positive score indicates an excess of state calls for a particular state relative to its genome-wide state abundance.

Testing cell count differences between npas4l mutants and siblings

This test was performed on sci-ATAC-seq profiles from npas4lmutant embryos (npas4lbns297/bns297) and their siblings (npas4lbns297/+,

npas4l+/+). npas4l mutant cells were separated from siblings based on their tagmentation barcodes. We tested for enrichment or
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depletion of cells from npas4l mutants versus siblings using a binomial test for each density cluster. The success probability was

determined by (total number of npas4l mutant cells) / (total number of npas4l mutant and sibling cells).

Motif discovery using neural networks

We utilized convolutional neural networks to predict the state probability from the segmentation model weighted by the read counts

from the underlying DNA sequence and thereby extracting associated motifs. To this end, we introduce the target score for the

regression task as sij =dij3ri for region i and state j where dij denotes the posterior decoding probability of region i and state j and

ri denotes the aggregated read counts for region i. That is, the score captures the cross-cluster accessibility pattern associated

with a state while also emphasizing regions with high read counts. For each state, we extracted the top 100k regions according

to that score of which we kept the top 15k and the bottom 15k sequences for model training and evaluation. These can be considered

as positive and negative sets.

The neural network was implemented using keras v2.2.499 and janggu v0.9.4.98 As input to the convolutional neural network we

extracted the 500 bp DNA sequences associated with the training and evaluation regions extended by ± 250 bp and converted

them to one hot encoding. The network uses a convolutional layer with 100 kernels, 13 bp kernel length and sigmoid activation to

scan both strands of the DNA sequence. Subsequently, the maximum activation across the strands is propagated forward and sub-

jected to global max pooling, dropout with 50% and a linear output node. We choose the sigmoid activation in the initial layer due to

its relationship with representing Bernoulli random variables, which, after normalization, allows us to approximately interpret the

kernel weights as log-likelihood ratios and thus position weight matrices.

The network was trained on all regions, except for regions on chromosome 1 and 5 which were used as a validation set. Training

was performed using ADAM byminimizing themean absolute error for at most 300 epochs with batch size 32 and early stopping with

a patience of 20 iterations. After model fitting, the 10 kernels whose maximum hidden activations per sequence after the first convo-

lution layer individually correlated most with the state-specific score were extracted, normalized to represent PWMs and reported as

de novo motifs.

These motifs were matched against motifs from JASPAR 2018,69 non-redundant vertebrates using TOMTOM.100

ChIP-seq
Embryos were collected 24 hpf, dechorionated (as described in embryo preparation for sci-ATAC-seq), briefly washed in PBT

(0.1% Triton X-100 in PBS) and fixed in 0.5% formaldehyde (Carl Roth #4979.1) in PBS for 15 minutes as previously published

for D. melanogaster111 with minor modifications: heptane was not added to the fixation buffer since unlike D. melanogaster ze-

brafish does not have a cuticula. They were washed in PBT-Glycine (PBS, 125mM glycine, 0.1% Triton X-100) and twice in PBT

(PBS, 0.1% Triton X-100) and snap frozen. Nuclei were extracted according to112: embryos were resuspended in 2 mL cell lysis

buffer (10mM Tris–HCl pH 7.5, 10mM NaCl, 0.5% IGEPAL (CA-630, Sigma, I8896), homogenized on ice for 15 min (dounced 20

times with a loose pestle and 10 times with a tight pestle), spun at 2000 g for 5 min at 4C. Nuclei were then lysed for 10 min on

ice in nuclei lysis buffer (50mM Tris–HCl pH 7.5, 10mM EDTA, 1% SDS, protease inhibitor cocktail), two volumes of IP dilution

buffer (16.7mM Tris–HCl pH 7.5, 167mM NaCl, 1.2mM EDTA, 0.01% SDS, protease inhibitor cocktail) were added and aliquots

were sonicated for 16 cycles (30 s ON, 30 s OFF, on high setting) in a Bioruptor Plus (Diagenode) to achieve a DNA fragment

size below 500 bp. ChIP was performed using True MicroChIP Kit (Diagenode #C01010130) according to the manufacturer’s

instructions with the following modifications: primary antibody was incubated at 4�C overnight and the reverse crosslinking

was done overnight. The following antibodies were used: H3K4me1 (abcam #ab8895), H3K4me2 (abcam #ab32356),

H3K4me3 (abcam #8580), H3K27ac (abcam #ab4729) and H3K36me3 (abcam #ab9050). The library was prepared using NEXT-

flex qRNA-Seq Kit v2 (BioScientific #5130-12, discontinued) according to the instructions for qChIP-Seq and paired-end

sequencing (2 3 75nt) was performed on a NextSeq 500/550 using a HighOutput v2 Kit for 150 cycles (Illumina #FC-404-

2002, discontinued).

ChIP-seq processing
Processing steps were implemented within the Snakemake framework.101 UMIs were extracted from paired-end reads using UMI-

tools113 and mapped to the danRer11 genome assembly using Bowtie2;95 -X 2000–no-discordant–no-mixed). Mapped reads were

sorted, indexed, and converted to .bam format with samtools91 then filtered for MAPQ 30 and deduplicated using UMI-tools. Input-

subtracted .bigwig for visualization (–operation subtract–binSize 50–scaleFactorsMethod None–normalizeUsing CPM–smooth-

Length 250–extendReads) and .bedgraph for HMM (–operation subtract–binSize 1–scaleFactorsMethod None–normalizeUsing

CPM–extendReads; see below) tracks were generated using deepTools.102 Reads were converted to bedpe files using bedtools.93

Peaks were called using JAMM103 considering both replicates separately (-r window -e 1 -b 250 -t paired).

Histone PTM HMM
Signals and peak calls from histone PTM ChIP-seq data were used as input for generating a HMM segmentation model as previously

described.54,55 Briefly, using bedtools intersect and map,93 genome-wide 10 bp resolution tracks were generated for each factor such

that places where peaks were called were assigned values fromChIP-seq signal files and where no peaks were called assigned values

of zero. These signal tracks for chromosomes 1 and 2 were then used as input to bw.r (https://github.com/mahmoudibrahim/

hmmForChromatin) to learn the model and the resulting model used to decode the rest of the genome states using decoding.r
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(https://github.com/mahmoudibrahim/hmmForChromatin). The model was learned with increasing number of states until patterns of

state coverage around segments proximal to annotated TSSs resembled previously observed patterns across metazoans,55 leading

to the selection of a model with 11 states plus one background state where no ChIP-seq peaks were called and/or ChIP-seq signals

were £ 0.

To classify sci-ATAC-seq regions as being enriched for a given histone PTM state, we developed a score where the state coverage

for a given region (obtained using bedtools annotate) is divided by the sum of the observed state coverage for the region set, and then

took the log of the ratio between this normalized coverage and the expected coverage of the state for that region size given the

genome-wide state probabilities. The region was classified as the state with the highest score. For Figure 4C, we applied this clas-

sification to all genome-wide 1 kb bins, counted the number of classifications for each state, and divided that number by the total

number of 1 kb bins to get expected state classification fractions. We then applied the classification to the unmerged sci-ATAC-

seq foreground 1 kb bins, calculated the observed classification fractions for each state, and plotted the log2 ratio between this num-

ber and the expected state classification fractions.

Cellular fractionation
Embryos were collected 24 hpf, dechorionated (as described in embryo preparation for sci-ATAC-seq) and homogenized on ice in

buffer N (10 mM HEPES pH 7.5, 250 mM sucrose, 50 mM NaCl, 5 mM MgCl2, 1 mM DTT, 1X Complete Protease Inhibitor (Roche

#11697498001) and 20 U/ml SUPERase-In RNase Inhibitor (Thermo Fisher Scientific #AM2696)) using a Dounce homogenizer. After

allowing the debris to settle for 5 minutes on ice the supernatant was then washed in PBS, loaded on a sucrose cushion (10 mM Tris

pH 7.4, 150 mMNaCl, 24% sucrose), centrifuged at 1000 g at 4�C and further fractionated according to Conrad and Ørom,114 nuclei

were briefly washed in PBS-EDTA (PBS, 0.5 mM EDTA) resuspended in 250 ul of glycerol buffer (20 mM Tris pH 7.4, 75 mM NaCl,

0.5 mM EDTA, 50% Glycerol, 20 U/ml SUPERase-In RNase Inhibitor) and 250ul of Urea buffer (10 mM Tris pH 7.4, 1 M Urea, 0.3 M

NaCl, 7.5 mM MgCl2, 0.2 mM EDTA, 1% Igepal CA-630, 20 U/ml SUPERase-In RNase Inhibitor) was immediately added, vortexed

and incubated on ice for 2min and spun at 13000 g for 2min. Chromatin pellet was briefly washed in PBS-EDTA (PBS, 0.5 mM EDTA)

and resuspended in Trizol using a 21 gauge needle and syringe. Total and chromatin RNA was extracted using Trizol (Thermo Fisher

Scientific #15596018) and Direct-zol RNA MiniPrep Kit (Zymo Research #R2052) according to the manufacturer’s instructions. The

library was prepared using NEXTflex Rapid Directional qRNA-Seq Kit (BioScientific #NOVA-5130-01D) according to the manufac-

turer’s instructions and paired-end sequencing (2 3 75 bp) was performed on a NextSeq 500/550 using a HighOutput v2 Kit for

150 cycles (Illumina #FC-404-2002, discontinued).

Chromatin RNA-seq processing and analysis
Unique molecular identifiers (UMIs) were extracted from .fastq files using UMI-tools113 and reads trimmed using fastx_trimmer from

the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Reads were then filtered for ERCC spike-in reads and rRNA bymapping

to a custom index with Bowtie 1.104 Trimmed, filtered, reads were then mapped using STAR.105 Mapped .bam files were then sub-

jected to PCRdeduplication using UMI-tools,113 followed by conversion to .fastq and remappingwith STAR to generate final mapped

files and normalized coverage tracks. For sci-ATAC-seq region chromatin RNA quantification, coverage tracks were created for each

genome strand using deepTools102 and then summed within a 5 kb window centered around the segment midpoint using bedtools

map.93

sci-ATAC-seq entropy
Foreground sci-ATAC-seq regions were counted for reads fromdensity cluster-collapsed .bam files using bedtoolsmulticov. A pseu-

docount of 1 was added to the matrix before per-cluster depth normalization. Then the Shannon entropy was calculated for each

region’s normalized count vector across the clusters using the following equation:

SE = �
Xn

i

pilog2pi

Where p is the probability of ATAC-seq signal in cluster i for a given region and n is all the sci-ATAC-seq clusters.

Co-accessibility
Foreground sci-ATAC-seq regions were measured for co-accessibility using Cicero9 with cisTopic topic probabilities and topic-

basedUMAP coordinates (see aboveMethod details ‘‘Dimensionality reduction, batch correction and clustering’’) as reduced dimen-

sion information, but otherwise with default parameters.

In situ Hi-C
Embryos were collected 24 hpf, dechorionated, fixed in 1% formaldehyde in PBS, quenched and washed as in Bonn et al.111 Nuclei

were extracted according to Bogdanovi�c et al.112 using the cell lysis buffer (10 mM Tris–HCl pH 7.5, 10 mMNaCl, 0.5% IGEPAL (CA-

630, Sigma, I8896) and a Dounce homogenizer as described in the Chip section.
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Hi-C library preparation was performed as previously described58 with modifications. In brief, 25 3 106 isolated nuclei were

divided in 5 aliquots and digested overnight with 1500U of HindIII (NEB, #R3104L) per aliquot. After biotin-fill in, proximity ligation

was carried out in each aliquot with 100 units of T4 DNA ligase (Invitrogen) at 16�C overnight. DNA was purified by

reverse crosslinking and DNA precipitation, and biotinylated nucleotides were removed from unligated fragments ends with 1U

T4 DNA polymerase per mg DNA for 4 hours at 12�C. DNA was sonicated to 300 – 500 bp, using the Bioruptor Plus and size

selected for fragments between 300 and 500 bp with AMPure XP beads (Beckman Coulter). Biotinylated DNA fragments were

pulled down with MyOne Streptavidin C1 beads (Invitrogen), end-repaired, A-tailed, and TruSeq sequencing adapters were ligated

to the DNA fragments with 15U T4 DNA ligase (Invitrogen) overnight at 16�C, shaking at 750 rpm. Adaptor-ligated DNA was ampli-

fied for 6-8 cycles using Herc II Fusion DNA polymerase (Agilent). PCR products were purified with AMPure XP beads and sub-

jected to Illumina paired-end sequencing (2 3 75 bp).

In situ Hi-C analysis
Processing steps were implemented within the Snakemake framework.101 In situHi-C reads were initially processed using the Juicer

pipeline.106 TADs were called using the insulation method61 with default settings (–is500000–nt0–ids250000–ss0–immean) after

dumping valid interactions at 25 kb binned resolution using juicer-tools and converting formats using HiTC.107 For scoring Hi-C in-

teractions, valid interactions were dumped by juicer-tools at fragment resolution, filtered to remove interactions less than 20 kb apart

and format converted using custom scripts, and then subjected to shuffling and scoring using the SHAMAN method.108

Insulation scores for sci-ATAC-seq regions were calculated as the mean signal from 40 kb windows surrounding the midpoints of

the segments using bedtools slop and map.93

For Hi-C/co-accessibility analysis, foreground sci-ATAC-seq regions used for clustering were measured for co-accessibility (see

above). Region pairs were then filtered to remove pairs less than 25 kb (custom scripts) apart and to be within the same TADs using

bedtools pairtobed.93 Filtered region pairs were then assigned a SHAMAN interaction score,108 using a slightly modified version of

‘‘shaman_generate_feature_grid’’ (https://bitbucket.org/tanaylab/shaman/src/default/) in which pair relationships are pre-deter-

mined and not re-calculated. For all filtered region pairs, the maximum SHAMAN score was retrieved within a 5 kb grid around

the interaction point from the region midpoints.

Data visualization
All plots for Figures 4 and S3 were generated using ggplot2,109 except for the Hi-C heatmaps which were plotted using ‘‘shaman_

plot_map_score_with_annotations’’ (https://bitbucket.org/tanaylab/shaman/src/default/), the browser shots which were

plotted using CoolBox (https://github.com/GangCaoLab/CoolBox), the co-accessibility arcs which were plotted using the built-in

Cicero plotting function,9 the histone PTM state coverage around annotated regions which was plotted from built-in R plot function,

and the histone PTM state/mark enrichment heatmap which was plotted by default from the HMM scripts (https://github.com/

mahmoudibrahim/hmmForChromatin).

Motif scanning in putative enhancers of npas4l
Sequences form putative enhances were obtained from their genomic coordinates using bedtools getfasta v2.27.193 with reference

genome danRer11 described above. A 0-order Markov local background was generated for each putative enhancer from its

sequence plus its 250 bp flanking sequences using fasta-get-markov from the MEME Suite 4.11.3.100 Each putative enhancer

sequence was then scanned for matches to motifs from the JASPAR vertebrate database69 using FIMO from the MEME Suite

4.11.370 with the aforementioned background.

Enhancer cloning and transgenesis
Npas4l enhancer candidate ‘‘enh1’’ was PCR amplified with Phusion HF PCR Mastermix (NEB #M0531S) from genomic DNA using

primer sequences 50- AGATGGGCCCTCGAGAGATCTCACTCTTCAGTCTTCAGTG and 50-CCCTCTAGAGTCGAGAGATCT

TAATGTGTCCTGCTTCTGC. The product was cloned into E1b-GFP-Tol283 (Addgene #37845) after digesting the plasmid with BglII

(NEB, #R0144S) using Gibson Assembly Master Mix (NEB, #E2611L). The insert was confirmed with Sanger sequencing to be

TCACTCTTCAGTCTTCAGTGTCTGATCTCTGGTCCGGGTCTGATCATCTGTAATGCTGCTTGTGACTCCTCAGCCAATCAGCAGAAG

GGGGCGTGTCATAACTGTCGTGGGAATATGACAGGCGTTATGAAGCGTTATGAGCTCTGTAGAGGAGCAGTGCTGACTACAGCCT

GACCACCAGCACTGCAGCGCACGCGAGTGTGTGTGTGTGTGTGTGTGTGTCTAGTGTGTGTGTTCTGCACAGATAAGAGCTCTAC

AGGAAGTCATCACACATGAAGATTTCCTGAACACAGCACTCATGCAGGAGCAGGAAGAGGAAACACACACAAACACACACATTAC

TGGCAGAAGCAGGACACATTAA. mRNA of the Tol2 transposase was in vitro transcribed from XbaI-linearized pT3TS-Tol292 using

the mMessage mMachine kit (Ambion). 25 pg enh1-e1b-GFP plasmid DNA alongside 25 pg Tol2mRNA were injected into zebrafish

zygotes and the injected embryos screened for fluorescence at 24 hpf.

Fluorescent embryo imaging
Embryos were embedded laterally in 1% low-melting agarose solved in eggwater. Living embryos were anaesthetized with 0.01%

tricaine prior to embedding and stayed under anesthesia during microscopy. The images were acquired using a LSM800 observer

confocal microscope (ZEISS) and processed using the ZenBlue software package. Only linear adjustments were used.
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Brightfield-like images were generated using ESID combined with enhanced depth of focus. The channel was then added to the

orthogonal projection of the fluorescent channels. For whole embryo imaging, tile scans of z stacks with a Pln Apo 10x/0.45 DICII

objective (ZEISS) were stitched with the ESID as reference channel.

Images of the trunk region were acquired using the C Apo 40x/1.1WDICIII (ZEISS). For optical sectioning through the axial vessels,

an Airyscan detector, followed by 2D airyscan processing was used. As anatomical landmark, we kept the yolk extension in the field

of view.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on statistical tests can be found in the Results, figure legends, and Method details sections.

ADDITIONAL RESOURCES

The manuscript is accompanied by an interactive web-browser for single-cell ATAC-seq data which is available at https://scbrowse.

mdc-berlin.de. In addition, we provide a track hub at (http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&hubUrl=https://

bimsbstatic.mdc-berlin.de/hubs/ohler/scipipe_v4/hub.txt). The source code for Scregseg is available at https://github.com/

BIMSBbioinfo/scregseg.
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