553 research outputs found

    The LHC (CMS) Discovery Potential for Models with Effective Supersymmetry and Nonuniversal Gaugino Masses

    Get PDF
    We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into quarks, leptons and LSP in models with effective supersymmetry where third generation of squarks is relatively light while the first two generations of squarks are heavy. We consider the general case of nonuniversal gaugino masses. Visibility of signal by an excess over SM background in (n \geq 2)jets + (m \geq 0)leptons + E^{miss}_T events depends rather strongly on the relation between LSP, second neutralino, gluino and squark masses and it decreases with the increase of LSP mass. We find that for relatively heavy gluino it is very difficult to detect SUSY signal even for light 3^{rd} generation squarks (m_{\tilde q_3}\le 1 TeV) if the LSP mass is closed to the 3^{rd} generation squark mass.Comment: 1 latex (35 pages), 4 eps (figures) file

    A life cycle stakeholder management framework for enhanced collaboration between stakeholders with competing interests

    Get PDF
    This is a postprint version of the Book Chapter. Information regarding the official publication is available from the link below - Copyright @ 2011 SpringerImplementation of a Life Cycle Sustainability Management (LCSM) strategy can involve significant challenges because of competing or conflicting objectives between stakeholders. These differences may, if not identified and managed, hinder successful adoption of sustainability initiatives. This article proposes a conceptual framework for stakeholder management in a LCSM context. The framework identifies the key sustainability stakeholder groups and suggests strategic ambiguity as a management tool to harness dysfunctional conflict into constructive collaboration. The framework is of practical value as it can be used as a guideline by managers who wish to improve collaboration with stakeholders along the supply chain. The article also fills a gap in the academic literature where there is only limited research on sustainability stakeholder management through strategic ambiguity

    Single flux quantum circuits with damping based on dissipative transmission lines

    Full text link
    We propose and demonstrate the functioning of a special Rapid Single Flux Quantum (RSFQ) circuit with frequency-dependent damping. This damping is achieved by shunting individual Josephson junctions by pieces of open-ended RC transmission lines. Our circuit includes a toggle flip-flop cell, Josephson transmission lines transferring single flux quantum pulses to and from this cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired frequency-dispersion in the RC line shunts which ensures sufficiently low noise at low frequencies, such circuits are well-suited for integrating with the flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure

    The strong coupling, unification, and recent data

    Get PDF
    The prediction of the strong coupling assuming (supersymmetric) coupling constant unification is reexamined. We find, using the new electroweak data, αs(MZ)0.129±0.010\alpha_{s}(M_{Z}) \approx 0.129 \pm 0.010. The implications of the large αs\alpha_{s} value are discussed. The role played by the ZZ beauty width is stressed. It is also emphasized that high-energy (but not low-energy) corrections could significantly diminish the prediction. However, unless higher-dimension operators are assumed to be suppressed, at present one cannot place strong constraints on the super-heavy spectrum. Non-leading electroweak threshold corrections are also discussed.Comment: 12 pages, LaTex + RevTex, uuencoded postscript file (including 13 figures) is attached. Also available at ftp://dept.physics.upenn.edu/pub/Ni

    Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows

    Get PDF
    A novel three-dimensional (3D) model based on Reynolds turbulence stress model (RSTM) closure of equations of carrier and particulate phases was elaborated for channel turbulent flows. The essence of the model is the direct calculation of normal and shear components of the Reynolds stresses for the particulate phase similar to the carrier fluid. The model is based on the Eulerian approach, which is applied for the 3D RANS modeling of the carrier flow and the particulate phase and the statistical probability dense function (PDF) approach focusing on the mathematical description of the second moments of the particulate phase

    Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Get PDF
    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view

    Low-scale supersymmetry breaking: effective description, electroweak breaking and phenomenology

    Full text link
    We consider supersymmetric scenarios in which the scale of SUSY breaking is low, sqrt{F}=O(TeV). Instead of studying specific models of this type, e.g. those with extra dimensions and low fundamental scale, we follow a model-independent approach based on a general effective Lagrangian, in which the MSSM supermultiplets are effectively coupled to a singlet associated to SUSY breaking. Our goal is to analyse the interplay bewteen SUSY breaking and electroweak breaking, generalizing earlier results. The conventional MSSM picture can be substantially modified, mainly because the Higgs potential contains additional effective quartic terms and resembles that of two-Higgs-doublet models, with an additional singlet. Novel opportunities to achieve electroweak breaking arise, and the electroweak scale may be obtained in a less fine-tuned way. Also the Higgs spectrum can be strikingly changed, and the lightest state can be much heavier than in usual supersymmetric scenarios. Other effects appear in the chargino and neutralino sectors, which contain the goldstino. Finally, we discuss the role of electroweak breaking in processes in which two goldstinos could be emitted, such as fermion-antifermion annihilation and the invisible decay of a Z boson or of neutral Higgs bosons.Comment: LaTeX, 47 pages, 5 figures; typos corrected, to appear in Nucl. Phys.
    corecore