95 research outputs found

    Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system

    Get PDF
    Eastern boundary upwelling systems (EBUS) are regions of high primary production often associated with oxygen minimum zones (OMZs). They represent key regions for the oceanic nitrogen (N) cycle. By exporting organic matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O) to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS) is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS), especially the Walvis Bay area (between 22° S and 24° S) where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1) the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2) export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 < 25 mmol O2 m−3); and (3) the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr−1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m−2 yr−1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary production estimated for the South Atlantic subtropical gyre. Export production (16.9 ± 1.3 × 1010 mol N yr−1) helps to maintain an OMZ off Namibia in which coupled nitrification, denitrification and anammox processes lead to losses of fixed N and N2O production. However, neither N losses (0.04 ± 0.025 × 1010 mol N yr−1) nor N2O emissions (0.03 ± 0.002 × 1010 mol N yr−1) significantly impact the main N exports of the Walvis Bay area. The studied area does not significantly contribute to N2O emissions (0.5 to 2.7%) compared to the global coastal upwelling emissions. Locally produced N2O is mostly advected southward by the poleward undercurrent

    9. Las diversas facetas de El Niño y sus efectos en la costa del Perú

    Get PDF
    El fenómeno El Niño es el modo dominante de la variabilidad interanual en el Océano Pacífico, resultando de un proceso de interacción entre el océano y la atmósfera en el Pacífico Tropical, Las últimas Investigaciones demuestran que existen varias facetas de este fenómeno que varían según las modalidades de interacción entre el océano y la atmosfera así como sus ubicaciones. Existen por lo menos dos tipos de El Niño, con expresiones diferentes sobre la Temperatura Superficial del Mar en el Pacifico Tropical y en la costa de Perú: uno que se desarrolla en el Pacifico Central (tiende a estar asociado a condiciones oceánicas más frías que favorecen el estado árido de la costa peruana y condiciones oceánicas hypóxicas), y otro que se desarrolla en el Pacifico Este (que transforma la costa peruana en una “típica” zona tropical, caracterizada por aguas costeras calientes y oxigenadas, y una lluvia intensa). Hoy en día, los esfuerzos de investigación para entender los mecanismos involucrados en los diferentes tipos de El Niño han sido reforzados, dado que, en las últimas décadas, se ha incrementado la frecuencia de ocurrencia de estos eventos en el Pacifico Central, sugiriéndose que podría ser una consecuencia del cambio climático. El perfeccionamiento de los modelos regionales acoplados tanto océano - atmosfera como océano - biogeoquímlco, tiene como objetivo mejorar la comprensión de la vulnerabilidad de la biosfera peruana al cambio climático y proponer un paradigma que represente la bimodalidad de la variabilidad interanual en el Pacifico Tropical.El Niño est le mode dominant de la variabilité interannuelle dans l’océan Pacifique, résultant d’un processus d’interaction entre l’océan et l’atmosphére dans le Pacifique tropical. Les recherches récentes montrent qu’il existe plusieurs facettes de ce phénomène qui varient selon les modalités d’interaction entre l’océan et l’atmosphére et leurs emplacements. Il y a au moins deux types de El Niño, avec des expressions différentes sur la Température de surface dans le Pacifique tropical et le long de la cote du Pérou: un qui se déroule dans le Pacifique central (associé á des conditions océaniques froides qui favorisent l’état aride de la cote péruvienne et des conditions océaniques d’hypoxie), et un autre qui a lieu dans le Pacifique oriental (qui transforme la cote péruvienne en une zone tropicale «typique», caractérisé par des eaux cótiéres chaudes et oxygénées, et de fortes pluies). Aujourd’hui, les efforts de recherche pour comprendre les mécanismes impliqués dans les différents types de El Niño ont été renforcés, en raison de l’accroissement de la fréquence d’occurrence de ces événements dans le Pacifique central au cours des dernières décennies a accru, suggérant qu’ll pourrait s’agir d’une conséquence du changement dimatique. L’optimisation des modeles régionaux couplés océan - atmosphére et océan - blogéochimiques, vise à améliorer la compréhension de la vulnérabilité de la biosphére péruvienne au changement dimatique et de proposer un paradigme qui représente la bimodalité de la variabilité Interannuelle dans le Pacifique tropical.The El Niño phenomenon is the dominant mode of inter-annual variability in the Pacific Ocean, which results from the ¡nteraction between the ocean and atmosphere in the tropical Pacific. Recent research shows that there are several facets of this phenomenon, which vary according to the modalities of ¡nteraction between the ocean and atmosphere, as well as their locations. There are at least two types of El Niño with different expresslons on the sea surface temperature in the tropical Pacific and on the coast of Peru: one that takes place in the Central Pacific (which tends to be associated with colder oceanic conditions who favoring the aridity of the Peruvian coast and the ocean conditions hypoxic), and another that takes place in the Eastern Pacific (which transforms the Peruvian coast in a “typical” tropical zone, with warm and oxygenated Coastal waters, and heavy rain). Nowadays, research efforts to understand the mechanisms involved in the different types of El Niño have been strengthened, since in recent decades has increased the frequency of these events in the Central Pacific, suggesting that ¡t might be a result of climate change. The ¡mprovement of both regional models coupled ocean - atmosphere and ocean - biogeochemical aims to Improve the understanding of the vulnerability of the Peruvian biosphere to climate change, and propose a paradigm that represents the bimodality of the Inter-annual variability in the tropical Pacific

    High-resolution imaging of human atherosclerotic carotid plaques with micro18F-FDG PET scanning exploring plaque vulnerability

    Get PDF
    FDG-PET can be used to identify vulnerable plaques in atherosclerotic disease. Clinical FDG-PET camera systems are restricted in terms of resolution for the visualization of detailed inflammation patterns in smaller vascular structures. The aim of the study is to evaluate the possible added value of a high-resolution microPET system in excised carotid plaques using FDG. In this study, 17 patients with planned carotid endarterectomy were included. Excised plaques were incubated in FDG and subsequently imaged with microPET. Macrophage presence in plaques was evaluated semi-quantitatively by immunohistochemistry. Plaque calcification was assessed additionally with CT and correlated to FDG uptake. Finally, FDG uptake and macrophage infiltration were compared with patient symptomatology. Heterogeneous distributions and variable intensities of FDG uptake were found within the plaques. A positive correlation between the distribution of macrophages and the FDG uptake (r = 0.68, P <.01) was found. A negative correlation was found between areas of calcifications and FDG uptake (r = -0.84, P <.001). Ratio FDG(max) values as well as degree of CD68 accumulation were significantly higher in CVA patients compared with TIA or amaurosis fugax patients (P <.05) and CVA patients compared with asymptomatic patients (P <.05). This ex vivo study demonstrates that excised carotid plaques can be visualized in detail using FDG microPET. Enhancement of clinical PET/CT resolution for similar imaging results in patients is needed

    Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 159 (2012): 1955-1967, doi:10.1007/s00227-012-1982-x.Many pteropod species in the eastern tropical north Pacific Ocean migrate vertically each day, transporting organic matter and respiratory carbon below the thermocline. These migrations take species into cold (15-10ºC) hypoxic water (< 20 µmol O2 kg-1) at depth. We measured the vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, some of which migrate and some which remain in oxygenated surface waters throughout the day. Within the upper 200 meters of the water column, changes in water temperature result in a ~60-75% reduction in respiration for most species. All three species tested under hypoxic conditions responded to low O2 with an additional ~35-50% reduction in respiratory rate. Combined, low temperature and hypoxia suppress the metabolic rate of pteropods by ~80-90%. These results shed light on the ways in which expanding regions of hypoxia and surface ocean warming may impact pelagic ecology.This work was funded by National Science Foundation grants to K. Wishner and B. Seibel (OCE – 0526502 and OCE – 0851043) and to K. Daly (OCE – 0526545), the University of Rhode Island, and the Rhode Island Experimental Program to Stimulate Competitive Research Fellowship program.2013-06-3

    Phytoplankton composition and abundance assessment in the Nador lagoon (Mediterranean coast of Morocco)

    Get PDF
    We evaluated phytoplankton abundance, composition and trophic state of the Nador lagoon (Morocco) on the basis of data taken in the period November 2007 to August 2008. Sampling was performed at 11 stations (bottle samples at 0.5 m depth and horizontal plankton net tows with mesh size of 20 mm). Among seven identified phytoplankton classes, diatoms and dinoflagellates dominated with 133 and 169 species, respectively. Frequent phytoplankton blooms were contributed by one to three species in the lagoon. Abundance and seasonality of phytoplankton characterized the Nador lagoon as a highly eutrophicated environment

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Correction for Lebrato et al., Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean

    Get PDF
    4 pages, 5 figures.-- Correction Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean; Proceedings of the National Academy of Sciences of the USA 117(36): 22281-22292 (2020); doi: 10.1073/pnas.1918943117; http://hdl.handle.net/10261/221953The authors wish to note the following: “This study’s seawater Sr:Ca values were systematically low as a consequence of normalization to another published low value for the International Association for the Physical Sciences of the Oceans (IAPSO) (1). IAPSO has been used at the Ocean Drilling Program, Texas A&M University (ODP-TAMU) (http://www-odp.tamu.edu/), and is still being used as the primary standard for elemental composition of seawater/interstitial water. Consequently, our seawater value of Sr:Ca = 8.28 mmol:mol was systematically low by approx. 3.70%, if we accept seawater Sr:Ca 8.60 mmol:mol as the recommended value for IAPSO North Atlantic surface water salinity standard. The uncertainty budget should be expanded including the uncertainty of IAPSO composition. The largest contribution to expanded uncertainty of our data comes from the uncertainty of the IAPSO reference composition, which is 3.29% using all published values. This will result in 3.30% (1 SD) expanded uncertainty for seawater Sr:Ca (and 0.5%, for seawater Mg:Ca) of the entire data set with respect to accuracy. We have corrected all seawater Sr:Ca values with a factor of 1.0243 in all our tables (e.g., SI Appendix, Table S1 averages) and in the figures (Fig. 4, Fig. 5), where a ratio was used. Note that the seawater Sr:Ca % changes are small, thus changes are hardly noticeable on large displays (e.g., Figures), but they can be seen in the tables and averages/SD calculations. Seawater Sr:Ca ratios are also corrected in the main text where relevantPeer reviewe

    Evolution of cuticular hydrocarbons in the hymenoptera : a meta-analysis

    Get PDF
    Chemical communication is the oldest form of communication, spreading across all organisms of life. In insects, cuticular hydrocarbons (CHC) function as the chemical recognition cues for the recognition of mates, species and nest-mates in social insects. Although much is known about the function of individual hydrocarbons and their biosynthesis, a phylogenetic overview is lacking. Here we review the CHC profiles of 241 species of hymenoptera, one of the largest and important insect orders, including the Symphyta (sawflies), the polyphyletic Parasitica (parasitoid wasps) and the Aculeata (wasps, bees and ants). We investigated whether these five major taxonomic groups differed in the presence and absence of CHC classes and whether the sociality of a species (solitarily vs. social) had an effect on CHC profile complexity. We found that the main CHC classes (i.e., n-alkanes, alkenes and methylalkanes) were all present early in the evolutionary history of the hymenoptera, as evidenced by their presence in ancient Symphyta and primitive Parasitica wasps. Throughout all groups within the Hymenoptera the more complex a CHC the fewer species that produce it, which may reflect the Occam's razor principle that insects’ only biosynthesize the most simple compound that fulfil its needs. Surprisingly there was no difference in the complexity of CHC profiles between social and solitary species, with some of the most complex CHC profiles belonging to the Parasitica. This profile complexity has been maintained in the ants, but some specialisation in biosynthetic pathways has led to a simplification of profiles in the aculeate wasps and bees. The absence of CHC classes in some taxa or species may be due to gene silencing or down-regulation rather than gene loss, as evidenced by sister species having highly divergent CHC profiles, and cannot be predicted by their phylogenetic history. The presence of highly complex CHC profiles prior to the vast radiation of the social hymenoptera indicates a 'spring-loaded' system where the diverse CHC needed for the complex communication systems of social insects, were already present for natural selection to act upon rather than evolve independently. This would greatly aid the multiple evolution of sociality in the Aculeata
    corecore