14 research outputs found

    Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions

    Get PDF
    The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions

    Determination of antifungal caspofungin in RPMI-1640 cell culture medium by column-switching HPLC-FLD

    No full text
    The actual scenario in the fight against fungal infections forces researchers to carry through with resistance studies to improve the therapies. These studies, which are performed in cell culture media, need accurate and sensitive analytical methodologies. That is why, in this work, an analytical method for caspofungin (CSF) concentration determination in RPMI-1640 cell culture medium with on-line sample treatment was developed and validated. CSF concentration was determined by HPLC-FLD using a column-switching procedure. The chromatographic analysis was carried out in less than 10 min using a C8 column (4 × 4 mm, 5 μm) as extraction stationary phase and a HSS T3 column (4.6 × 100 mm, 5 μm) as the analytical column. The used mobile phases were mixtures of phase A: pH 2 (adjusted with TFA) aqueous phase and phase B: ACN. For the extraction, the composition was (95:5, A:B v/v) and for the analysis (60:40, A:B v/v), both done in isocratic elution mode. These chromatographic conditions allowed reaching a limit of quantification of 10 μg/L, using 100 μL of sample with an injected volume of 40 μL. The proposed method was successfully validated in terms of selectivity, carryover, linear concentration range, accuracy and precision according to the criteria established by the Food and Drug Administration. Available amount of CSF in RPMI-1640 solution was found critical. CSF concentrations remained stable up to 2 h at room temperature. The developed method was applied for the direct analysis of CSF concentrations from in vitro experiments in presence of C. glabrata (CAGL18). The results highlight the decrease of cell proliferation even if the CSF amount decreases too, which asks question about the real value of the efficient concentration for CSF antifungal activity.The authors thank University of the Basque Country(UPV/EHU) (Project GIU 16/04) for financial support. B. Uribe thanks UPV/EHU for the pre-doctoral fellowship in co-supervision with the Univer- sity of Bordeaux
    corecore