570 research outputs found
Studies of carbonate rock deformation Moine Thrust Zone, N.W. Scotland
Imperial Users onl
Changes in Avian Vocalization Occurrence and Frequency Range During the Winter
Human population expansion has led to an increase in vehicle traffic and therefore vehicle noise. Traffic and traffic noise has been shown to affect avian abundance, breeding success, density and species diversity on the landscape. Documented changes in avian vocalizations due to traffic noise include shifts in amplitude, frequency, rate, timing, and duration of vocalizations along with a number of behavioral adaptations. During the winters of 2011–2012 and 2012–2013, we recorded and measured the “chick-a-dee” vocalization of Black-capped Chickadees (Poecile atricapillus) and the “po-ta-to-chip” vocalization of American Goldfinches (Spinus tristis) to determine if bird vocalizations near high traffic noise had higher minimum and maximum frequencies than bird vocalizations near low traffic noise. We found that both the Black-capped Chickadee and American Goldfinch vocalizations have a higher minimum frequency near high traffic noise while the maximum frequency showed no change. This suggests that these species will alter the part of their vocalization that is acoustically masked by traffic noise in order to better transmit the vocalization. However, costs of altering vocalizations include the inability to attract a mate, poor vocal performance, not sounding like conspecifics, and being more easily heard by predators. Chickadees also alter how often they vocalize based on their flock composition. Chickadees vocalize more in mixed-species flocks with other satellite members than in flocks that contained juncos or in single-species flocks of chickadees. Also, single species flocks of Black-capped Chickadees tended to be smaller in size and mixed-species flocks of Dark-eyed Juncos plus individual satellite members tended to be larger in size
Soyinka’s Language Engineering in the Jero Plays and The Beatification of Area Boy
Wole Soyinka engineers language to reflect his bilinguality and biculturalism, and to define his style. The paper attempts to debunk some misconceptions about Soyinka’s language which portray him as a Eurocentric scholar who often uses obscure diction and foreign imagery in his works. Two of his plays- The Jero Plays, published before he won the Nobel Prize, and The Beatification of Area Boy published after, serve as points of reference. The systemic functional linguistic theory is used as a framework because it recognizes situational constraints on language use. A content analysis of the texts under review undertakes from the viewpoint of Soyinka’s style, his portrayal of the African culture and worldview, and his concern for the language problemreveals that in most of his works, Soyinka has used features which mark out the varieties of English used in a second language situation.
Multiscale Partition of Unity
We introduce a new Partition of Unity Method for the numerical homogenization
of elliptic partial differential equations with arbitrarily rough coefficients.
We do not restrict to a particular ansatz space or the existence of a finite
element mesh. The method modifies a given partition of unity such that optimal
convergence is achieved independent of oscillation or discontinuities of the
diffusion coefficient. The modification is based on an orthogonal decomposition
of the solution space while preserving the partition of unity property. This
precomputation involves the solution of independent problems on local
subdomains of selectable size. We deduce quantitative error estimates for the
method that account for the chosen amount of localization. Numerical
experiments illustrate the high approximation properties even for 'cheap'
parameter choices.Comment: Proceedings for Seventh International Workshop on Meshfree Methods
for Partial Differential Equations, 18 pages, 3 figure
Variation in Avian Vocalizations during the Non-Breeding Season in Response to Traffic Noise
Low-frequency traffic noise that leads to acoustic masking of vocalizations may cause birds to alter the frequencies or other components of their vocalizations in order to be heard by conspecifics and others. Altering parts of a vocalization may result in poorer vocal performance or the message contained in the vocalization being received incorrectly. During the winters of 2011–2012 and 2012–2013, we recorded and measured the “chick-a-dee” call of Black-capped Chickadees (Poecile atricapillus) and the “po-ta-to-chip” call of American Goldfinches (Spinus tristis) to determine whether components of the calls produced in areas of high traffic noise and low traffic noise differed in any way. We found that both chickadee and goldfinch calls had higher minimum frequencies in areas with high traffic-noise than in low traffic-noise areas. The maximum frequencies showed no differences in either species’ calls. This suggests that chickadees and goldfinches alter the part of their calls that are acoustically masked by traffic noise in effort to better transmit the vocalization. These differences suggest that increasing anthropogenic noise may influence avian communication and that noise management should be included in conservation planning
Stable Generalized Finite Element Method (SGFEM)
The Generalized Finite Element Method (GFEM) is a Partition of Unity Method
(PUM), where the trial space of standard Finite Element Method (FEM) is
augmented with non-polynomial shape functions with compact support. These shape
functions, which are also known as the enrichments, mimic the local behavior of
the unknown solution of the underlying variational problem. GFEM has been
successfully used to solve a variety of problems with complicated features and
microstructure. However, the stiffness matrix of GFEM is badly conditioned
(much worse compared to the standard FEM) and there could be a severe loss of
accuracy in the computed solution of the associated linear system. In this
paper, we address this issue and propose a modification of the GFEM, referred
to as the Stable GFEM (SGFEM). We show that the conditioning of the stiffness
matrix of SGFEM is not worse than that of the standard FEM. Moreover, SGFEM is
very robust with respect to the parameters of the enrichments. We show these
features of SGFEM on several examples.Comment: 51 pages, 4 figure
Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty
The reliability of computer predictions of physical events depends on several factors: the mathematical model of the event, the numerical approximation of the model, and the random nature of data characterizing the model. This paper addresses the mathematical theories, algorithms, and results aimed at estimating and controlling modeling error, numerical approximation error, and error due to randomness in material coefficients and loads. A posteriori error estimates are derived and applications to problems in solid mechanics are presented. (C) 2004 Elsevier B.V. All rights reserved
Recommended from our members
Letter processing and font information during reading: beyond distinctiveness, where vision meets design
Letter identification is a critical front end of the
reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading
Recommended from our members
Piezoresistive microcantilever optimization for uncooled infrared detection technology
Uncooled infrared sensors are significant in a number of scientific and technological applications. A new approach to uncooled infrared detectors has been developed using piezoresistive microcantilevers coated with thermal energy absorbing materials. Infrared radiation absorbed by the microcantilever detector can be sensitively detected as changes in electrical resistance as function of microcantilever bending. The dynamic range of these devices is extremely large due to measurable resistance change obtained with only nanometer level cantilever displacement. Optimization of geometrical properties for selected commercially available cantilevers is presented. We also present results obtained from a modeling analysis of the thermal properties of several different microcantilever detector architectures
- …