We introduce a new Partition of Unity Method for the numerical homogenization
of elliptic partial differential equations with arbitrarily rough coefficients.
We do not restrict to a particular ansatz space or the existence of a finite
element mesh. The method modifies a given partition of unity such that optimal
convergence is achieved independent of oscillation or discontinuities of the
diffusion coefficient. The modification is based on an orthogonal decomposition
of the solution space while preserving the partition of unity property. This
precomputation involves the solution of independent problems on local
subdomains of selectable size. We deduce quantitative error estimates for the
method that account for the chosen amount of localization. Numerical
experiments illustrate the high approximation properties even for 'cheap'
parameter choices.Comment: Proceedings for Seventh International Workshop on Meshfree Methods
for Partial Differential Equations, 18 pages, 3 figure