174 research outputs found

    The outer membranes of Brucella spp. are not barriers to hydrophobic permeants

    Get PDF
    The patterns of susceptibility to hydrophobic and hydrophilic drugs and the uptake of the fluorescent probe N-phenyl-naphthylamine in Brucella spp., Haemophilus influenzae, Escherichia coli, and deep rough Salmonella minnesota mutants were compared. The results show that the outer membranes of smooth and naturally rough Brucella spp. do not represent barriers to hydrophobic permeants and that this absence of a barrier relates at least in part to the properties of Brucella lipopolysaccharide

    The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides

    Get PDF
    The actions of polymyxin B, rabbit polymorphonuclear lysosome extracts, 14 polycationic peptides (including defensin NP-2, cecropin P1, lactoferricin B, and active peptides from cationic protein 18 and bactenecin), EDTA, and Tris on Brucella spp. were studied, with other gram-negative bacteria as controls. Brucella spp. were comparatively resistant to all of the agents listed above and bound less polymyxin B, and their outer membranes (OMs) were neither morphologically altered nor permeabilized to lysozyme by polymyxin B concentrations, although both effects were observed for controls. EDTA and peptides increased or accelerated the partition of the hydrophobic probe N-phenyl-naphthylamine into Escherichia coli and Haemophilus influenzae OMs but had no effect on Brucella OMs. Since Brucella and H. influenzae OMs are permeable to hydrophobic compounds (G. Martínez de Tejada and I. Moriyón, J. Bacteriol. 175:5273-5275, 1993), the results show that such unusual permeability is not necessarily related to resistance to polycations. Although rough (R) B. abortus and B. ovis were more resistant than the controls were, there were qualitative and quantitative differences with smooth (S) brucellae; this may explain known host range and virulence differences. Brucella S-lipopolysaccharides (LPSs) had reduced affinities for polycations, and insertion of Brucella and Salmonella montevideo S-LPSs into the OM of a Brucella R-LPS mutant increased and decreased, respectively, its resistance to cationic peptides. The results show that the core lipid A of Brucella LPS plays a major role in polycation resistance and that O-chain density also contributes significantly. It is proposed that the features described above contribute to Brucella resistance to the oxygen-independent systems of phagocytes

    Evolution of the Southwest Australian Rifted Continental Margin During Breakup of East Gondwana: Results from IODP Expedition 369

    Get PDF
    International Ocean Discovery Program Expedition 369 drilled four sites on the southwestern Australian continental margin, in the deep water Mentelle Basin (MB) and on the neighboring Naturaliste Plateau (NP). The drillsites are located on continental crust that continued rifting after seafloor spreading began further north on the Perth Abyssal Plain (PAP) between magnetochrons M11r and M11n (133‐132 Ma), ending when spreading began west of the NP between chrons M5n and M3n (126‐124 Ma). Drilling recovered the first in‐situ samples of basalt flows overlying the breakup unconformity on the NP, establishing a magnetostratigraphically constrained eruption age of >131‐133 Ma and confirming a minimal late Valanginian age for the breakup unconformity (coeval with the onset of PAP seafloor spreading). Petrogenetic modeling indicates the basalts were generated by 25% melting at 1.5 GPa and a potential temperature of 1380‐1410 °C, consistent with proximity of the Kerguelen plume during breakup. Benthic foraminiferal fossils indicate that the NP remained at upper bathyal or shallower depths during the last 6 Myr of rifting and for 3‐5 Myr after breakup between India and Australia. The limited subsidence is attributed to heat from the nearby Kerguelen plume and PAP spreading ridge. The margin subsided to middle bathyal depths by Albian time and to lower bathyal (NP) or greater (MB) depths by late Paleogene time. Periods of rapid sedimentation accompanied a westward jump of the PAP spreading ridge (108 Ma), rifting on the southern margin (100‐84 Ma), and opening of the southern seaway between Australia and Antarctica (60‐47 Ma)

    Clinical implication of FMR1 intermediate alleles in a Spanish population

    Get PDF
    FMR1 premutation carriers (55-200 CGGs) are at risk of developing Fragile X-associated primary ovarian insufficiency as well as Fragile X-associated tremor/ataxia syndrome. FMR1 premutation alleles are also associated with a variety of disorders, including psychiatric, developmental, and neurological problems. However, there is a major concern regarding clinical implications of smaller CGG expansions known as intermediate alleles (IA) or gray zone alleles (45-54 CGG). Although several studies have hypothesized that IA may be involved in the etiology of FMR1 premutation associated phenotypes, this association still remains unclear. The aim of this study was to provide new data on the clinical implications of IA. We reviewed a total of 17 011 individuals: 1142 with primary ovarian insufficiency, 478 with movement disorders, 14 006 with neurodevelopmental disorders and 1385 controls. Similar IA frequencies were detected in all the cases and controls (cases 1.20% vs controls 1.39%, P =.427). When comparing the allelic frequencies of IA = 50CGGs, a greater, albeit not statistically significant, number of alleles were detected in all the cohorts of patients. Therefore, IA below 50 CGGs should not be considered as risk factors for FMR1 premutation-associated phenotypes, at least in our population. However, the clinical implication of IA = 50CGGs remains to be further elucidated

    Lime-based rendering mortars with photocatalytic and hydrophobic agents: assessment of the water repellency and biocide effect

    Get PDF
    Different rendering mortars were prepared by mixing air lime and air lime-pozzolanic nanosilica with TiO2 and sodium oleate as, respectively, photocatalytic and water repellent agents, added in bulk. The aim of the work was to design and obtain new rendering mortars with improved durability focusing in the reduction of the water absorption of these materials and in their self-cleaning and biocide effect. To achieve a better distribution of the TiO2 particles, which was expected to enhance their efficiency, different dispersing agents were also incorporated to the fresh mixtures. Four diverse polycarboxylate ethers superplasticizers and a poly-naphthalene-sulfonate were tested. Workability and fluidity of the fresh rendering mortars were determined to guarantee the applicability of the final products. Water contact angle was monitored with the aim of assessing the hydrophobicity of the mortars lent by the water repeller. The biocide effect was studied by means of the culture of a strain of Pseudomonas fluorescens. The colonization of the mortars’ surface was analyzed by determining the number of colonies forming units (CFU) after several days subjecting the samples to suitable T and RH conditions. At the same time, the surface of the mortars was irradiated with solar light to activate the photocatalyst. Results showed the efficiency of the sodium oleate in reducing the water uptake of the rendering mortars. Good compatibility between the water repellent agent, the pozzolanic additive and some of the polycarboxylate superplasticizers was observed. The presence of the photocatalyst was found to be very effective in preventing microbiological colonization

    Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides

    Get PDF
    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS

    Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles

    Get PDF
    Microvesicles are plasma membrane-derived vesicles released into the extracellular environment by a variety of cell types. Originally characterized from platelets, microvesicles are a normal constituent of human plasma, where they play an important role in maintaining hematostasis. Microvesicles have been shown to transfer proteins and RNA from cell to cell and they are also believed to play a role in intercellular communication. We characterized the RNA and protein content of embryonic stem cell microvesicles and show that they can be engineered to carry exogenously expressed mRNA and protein such as green fluorescent protein (GFP). We demonstrate that these engineered microvesicles dock and fuse with other embryonic stem cells, transferring their GFP. Additionally, we show that embryonic stem cells microvesicles contain abundant microRNA and that they can transfer a subset of microRNAs to mouse embryonic fibroblasts in vitro. Since microRNAs are short (21–24 nt), naturally occurring RNAs that regulate protein translation, our findings open up the intriguing possibility that stem cells can alter the expression of genes in neighboring cells by transferring microRNAs contained in microvesicles. Embryonic stem cell microvesicles may be useful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and may be important mediators of signaling within stem cell niches

    Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo

    Get PDF
    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
    corecore