310 research outputs found

    Homotopy Relations for Topological VOA

    Full text link
    We consider a parameter-dependent version of the homotopy associative part of the Lian-Zuckerman homotopy algebra and provide the interpretation of multilinear operations of this algebra in terms of integrals over certain polytopes. We explicitly prove the pentagon relation up to homotopy and propose a construction of higher operations.Comment: 15 pages, 1 figure, typos correcte

    All Stable Characteristic Classes of Homological Vector Fields

    Full text link
    An odd vector field QQ on a supermanifold MM is called homological, if Q2=0Q^2=0. The operator of Lie derivative LQL_Q makes the algebra of smooth tensor fields on MM into a differential tensor algebra. In this paper, we give a complete classification of certain invariants of homological vector fields called characteristic classes. These take values in the cohomology of the operator LQL_Q and are represented by QQ-invariant tensors made up of the homological vector field and a symmetric connection on MM by means of tensor operations.Comment: 17 pages, references and comments adde

    Homotopy Lie algebras, lower central series and the Koszul property

    Full text link
    Let X and Y be finite-type CW-complexes (X connected, Y simply connected), such that the rational cohomology ring of Y is a k-rescaling of the rational cohomology ring of X. Assume H^*(X,Q) is a Koszul algebra. Then, the homotopy Lie algebra pi_*(Omega Y) tensor Q equals, up to k-rescaling, the graded rational Lie algebra associated to the lower central series of pi_1(X). If Y is a formal space, this equality is actually equivalent to the Koszulness of H^*(X,Q). If X is formal (and only then), the equality lifts to a filtered isomorphism between the Malcev completion of pi_1(X) and the completion of [Omega S^{2k+1}, Omega Y]. Among spaces that admit naturally defined homological rescalings are complements of complex hyperplane arrangements, and complements of classical links. The Rescaling Formula holds for supersolvable arrangements, as well as for links with connected linking graph.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper30.abs.htm

    The homotopy theory of simplicial props

    Full text link
    The category of (colored) props is an enhancement of the category of colored operads, and thus of the category of small categories. In this paper, the second in a series on "higher props," we show that the category of all small colored simplicial props admits a cofibrantly generated model category structure. With this model structure, the forgetful functor from props to operads is a right Quillen functor.Comment: Final version, to appear in Israel J. Mat

    Multi-modal dissolution testing system for pharmaceutical tablets

    Get PDF
    This project aims to develop a novel multimodal sensor system that is capable of resolving the key processes, as well as how these processes are linked to microstructure, formulation and raw material attributes

    The structure of 2D semi-simple field theories

    Full text link
    I classify all cohomological 2D field theories based on a semi-simple complex Frobenius algebra A. They are controlled by a linear combination of kappa-classes and by an extension datum to the Deligne-Mumford boundary. Their effect on the Gromov-Witten potential is described by Givental's Fock space formulae. This leads to the reconstruction of Gromov-Witten invariants from the quantum cup-product at a single semi-simple point and from the first Chern class, confirming Givental's higher-genus reconstruction conjecture. The proof uses the Mumford conjecture proved by Madsen and Weiss.Comment: Small errors corrected in v3. Agrees with published versio

    LL_\infty-interpretation of a classification of deformations of Poisson structures in dimension three

    Full text link
    We give an LL_\infty-interpretation of the classification, obtained in [AP2], of the formal deformations of a family of exact Poisson structures in dimension three. We indeed obtain again the explicit formulas for all the formal deformations of these Poisson structures, together with a classification in the generic case, by constructing a suitable quasi-isomorphism between two LL_\infty-algebras, which are associated to these Poisson structures.Comment: 31 pages, Added references, minor change

    Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three-dimensional time-resolved (4D) phase-contrast (PC) CMR can visualize and quantify cardiovascular flow but is hampered by long acquisition times. Acceleration with SENSE or k-t BLAST are two possibilities but results on validation are lacking, especially at 3 T. The aim of this study was therefore to validate quantitative in vivo cardiac 4D-acquisitions accelerated with parallel imaging and k-t BLAST at 1.5 T and 3 T with 2D-flow as the reference and to investigate if field strengths and type of acceleration have major effects on intracardiac flow visualization.</p> <p>Methods</p> <p>The local ethical committee approved the study. 13 healthy volunteers were scanned at both 1.5 T and 3 T in random order with 2D-flow of the aorta and main pulmonary artery and two 4D-flow sequences of the heart accelerated with SENSE and k-t BLAST respectively. 2D-image planes were reconstructed at the aortic and pulmonary outflow. Flow curves were calculated and peak flows and stroke volumes (SV) compared to the results from 2D-flow acquisitions. Intra-cardiac flow was visualized using particle tracing and image quality based on the flow patterns of the particles was graded using a four-point scale.</p> <p>Results</p> <p>Good accuracy of SV quantification was found using 3 T 4D-SENSE (r<sup>2 </sup>= 0.86, -0.7 ± 7.6%) and although a larger bias was found on 1.5 T (r<sup>2 </sup>= 0.71, -3.6 ± 14.8%), the difference was not significant (p = 0.46). Accuracy of 4D k-t BLAST for SV was lower (p < 0.01) on 1.5 T (r<sup>2 </sup>= 0.65, -15.6 ± 13.7%) compared to 3 T (r<sup>2 </sup>= 0.64, -4.6 ± 10.0%). Peak flow was lower with 4D-SENSE at both 3 T and 1.5 T compared to 2D-flow (p < 0.01) and even lower with 4D k-t BLAST at both scanners (p < 0.01). Intracardiac flow visualization did not differ between 1.5 T and 3 T (p = 0.09) or between 4D-SENSE or 4D k-t BLAST (p = 0.85).</p> <p>Conclusions</p> <p>The present study showed that quantitative 4D flow accelerated with SENSE has good accuracy at 3 T and compares favourably to 1.5 T. 4D flow accelerated with k-t BLAST underestimate flow velocities and thereby yield too high bias for intra-cardiac quantitative in vivo use at the present time. For intra-cardiac 4D-flow visualization, however, 1.5 T and 3 T as well as SENSE or k-t BLAST can be used with similar quality.</p

    Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p
    corecore