160 research outputs found

    A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    Get PDF
    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m−2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = −(T−273.2)+(Sice−1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles

    A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation

    Get PDF
    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles

    A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research

    Get PDF
    The spectral light-absorbing behavior of carbonaceous aerosols varies depending on the chemical composition and structure of the particles. A new single-cavity three-wavelength photoacoustic spectrometer was developed and characterized for measuring absorption coefficients at three wavelengths across the visible spectral range. In laboratory studies, several types of soot with different organic content were generated by a diffusion flame burner and were investigated for changes in mass-specific absorption cross section (MAC) values, absorption and scattering Angstrom exponents (alpha(abs) and alpha(sca)), and single scattering albedo (omega). By increasing the organic carbonaceous (OC) content of the aerosol from 50 to 90% of the total carbonaceous mass, for 660 nm nearly no change of MAC was found with increasing OC content. In contrast, for 532 nm a significant increase, and for 445 nm a strong increase of MAC was found with increasing OC content of the aerosol. Depending on the OC content, the Angstrom exponents of absorption and scattering as well as the single scattering albedo increased. These laboratory results were compared to a field study at a traffic-dominated urban site, which was also influenced by residential wood combustion. For this site a daily average value of alpha(abs)(445-660) of 1.9 was found

    Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model

    Get PDF
    The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model

    A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research

    Get PDF
    The spectral light-absorbing behavior of carbonaceous aerosols varies depending on the chemical composition and structure of the particles. A new single-cavity three-wavelength photoacoustic spectrometer was developed and characterized for measuring absorption coefficients at three wavelengths across the visible spectral range. In laboratory studies, several types of soot with different organic content were generated by a diffusion flame burner and were investigated for changes in mass-specific absorption cross section (MAC) values, absorption and scattering Ångström exponents (αabs and αsca), and single scattering albedo (ω). By increasing the organic carbonaceous (OC) content of the aerosol from 50 to 90 % of the total carbonaceous mass, for 660 nm nearly no change of MAC was found with increasing OC content. In contrast, for 532 nm a significant increase, and for 445 nm a strong increase of MAC was found with increasing OC content of the aerosol. Depending on the OC content, the Ångström exponents of absorption and scattering as well as the single scattering albedo increased. These laboratory results were compared to a field study at a traffic-dominated urban site, which was also influenced by residential wood combustion. For this site a daily average value of αabs(445–660) of 1.9 was found

    High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures

    Get PDF
    Homogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in the upper troposphere. There the air temperature is low, the ice supersaturation can be high and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation processes. The most common description to quantify homogeneous freezing processes is based on the water activity criterion (WAC) as proposed by Koop et al. (2000). The WAC describes the homogeneous nucleation rate coefficients only as a function of the water activity, which makes this approach well applicable in numerical models. In this study, we investigate the homogeneous freezing behavior of aqueous sulfuric acid aerosol particles by means of a comprehensive collection of laboratory-based homogeneous freezing experiments conducted at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber, which were conducted as part of 17 measurement campaigns since 2007. The most recent experiments were conducted during October 2020 with special emphasis on temperatures below 200 K. Aqueous sulfuric acid aerosol particles of high purity were generated by particle nucleation in a gas flow composed of clean synthetic air and sulfuric acid vapor, which was added to the AIDA chamber. The resulting chamber aerosol had number concentrations from 30 cm3^{-3} up to several thousand per cubic centimeter with particle diameters ranging from about 30 nm to 1.1 µm. Homogeneous freezing of the aerosol particles was measured at simulated cirrus formation conditions in a wide range of temperatures between 185 and 230 K with a steady increase of relative humidity during each experiment. At temperatures between about 205 K and about 230 K, the AIDA results agree well with the WAC-based predictions of homogeneous freezing onsets. At lower temperatures, however, the AIDA results show an increasing deviation from the WAC-based predictions towards higher freezing onsets. For temperatures between 185 and 205 K, the WAC-based ice saturation ratios for homogeneous freezing onsets increase from about 1.6 to 1.7, whereas the AIDA measurements show an increase from about 1.7 to 2.0 in the same temperature range. Based on the experimental results of our direct measurements, we suggest a new fit line to formulate the onset conditions of homogeneous freezing of sulfuric acid aerosol particles as an isoline for nucleation rate coefficients between 5×108^{8} and 1013^{13} cm3^{-3} s1^{-1}. The potential significant impacts of the higher homogeneous freezing thresholds, as directly observed in the AIDA experiments under simulated cirrus formation conditions, on the model prediction of cirrus cloud occurrence and related cloud radiative effects are discussed

    Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany

    Get PDF
    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.Fil: Steinke, I.. Karlsruhe Institute of Technology; AlemaniaFil: Funk, R.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Busse, J.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Iturri, Laura Antonela. Universidad Nacional de La Pampa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Kirchen, S.. Karlsruhe Institute of Technology; AlemaniaFil: Leue, M.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Möhler, O.. Karlsruhe Institute of Technology; AlemaniaFil: Schwartz, T.. Universidad Nacional de La Pampa; ArgentinaFil: Schnaiter, M.. Karlsruhe Institute of Technology; AlemaniaFil: Sierau, B.. Institute for Atmospheric and Climate Science; SuizaFil: Toprak, E.. Karlsruhe Institute of Technology; AlemaniaFil: Ullrich, R.. Karlsruhe Institute of Technology; AlemaniaFil: Ulrich, A.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Hoose, C.. Karlsruhe Institute of Technology; AlemaniaFil: Leisner, T.. Karlsruhe Institute of Technology; Alemania. Heidelberg University; Alemani

    The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles

    Get PDF
    Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼105^{5} to 1011^{11} m2^{-2}, respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice-nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds

    Identification of novel integrin binding partners for CIB1: structural and thermodynamic basis of CIB1 promiscuity

    Get PDF
    The short cytoplasmic tails of the α and β chains of integrin adhesion receptors regulate integrin activation and cell signaling. Significantly less is known about proteins that bind to α-integrin cytoplasmic tails (CTs) than β-CTs to regulate integrins. CIB1 was previously identified as an αIIb binding partner that inhibits agonist-induced activation of the platelet-specific integrin, αIIbβ3. A sequence alignment of all α-integrin CTs revealed that key residues in the CIB1 binding site on αIIb are well-conserved, and was used to delineate a consensus binding site (I/L-x-x-x-L/M-W/Y-K-x-G-F-F). Because the CIB1 binding site on αIIb is conserved in all α-integrins, and CIB1 expression is ubiquitous, we asked if CIB1 could interact with other α-integrin CTs. We predicted that multiple α-integrin CTs were capable of binding to the same hydrophobic binding pocket on CIB1 with docking models generated by all-atom replica exchange discrete molecular dynamics. After demonstrating novel in vivo interactions between CIB1 and other whole integrin complexes with co-immunopreceipitations, we validated the modeled predictions with solid-phase competitive binding assays showing that other α-integrin CTs compete with the αIIb CT for binding to CIB1 in vitro. Isothermal titration calorimetry measurements indicated that this binding is driven by hydrophobic interactions and depends on residues in the CIB1 consensus binding site. These new mechanistic details of CIB1-integrin binding imply that CIB1 could bind to all integrin complexes and act as a broad regulator of integrin function
    corecore