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Abstract Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic
material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work,
we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the
Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust
from different regions of the world. The results are expressed as ice nucleation active surface site (INAS)
densities and presented for the immersion freezing and the deposition nucleation mode. For immersion
freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies
which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies
between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the
deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a
temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between
109 and 1011m�2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect
of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency
observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source
of the increased ice nucleation efficiency.

1. Introduction

Aerosol particles influence cloud formation and properties. Thus, aerosols have a potentially large impact on
the global climate and the hydrological cycle [Boucher et al., 2013]. One of the processes governing the inter-
action between aerosol particles and clouds is the initiation of droplet freezing in mixed-phase clouds at tem-
peratures above 235 K [Pruppacher and Klett, 1997]. Such heterogeneous freezing processes require solid
aerosol particles, so-called ice-nucleating particles (INPs), which facilitate the ice nucleation process. Below
235 K, only pure ice clouds, so-called cirrus clouds, exist which are formed either by heterogeneous ice forma-
tion processes involving INPs or by the homogeneous freezing of solution droplets [Vali et al., 2015].

Several ice nucleation modes have been hypothesized, namely, immersion/condensation freezing, deposi-
tion nucleation, and contact freezing [Vali et al., 2015]. Immersion freezing is initiated by aerosol particles
within liquid cloud droplets, whereas condensation freezing occurs instantaneously within a thin layer of con-
densed water on the aerosol particle. Below ambient water saturation, pore condensation nucleation might
occur in voids and cavities [Marcolli, 2014]. Water vapor directly being converted into ice at the surface of an
aerosol particle is termed deposition nucleation. Contact freezing occurs when dry interstitial aerosol parti-
cles collide with supercooled cloud droplets and initiate freezing upon collision.

Only a minor fraction of all atmospheric aerosol particles acts as INPs in mixed-phase clouds [DeMott et al.,
2010], and little is known about their surface properties and chemical composition. Nevertheless, several
atmospheric particle species have been identified as potential INPs, ranging from biological particles such
as bacteria, pollen, or fungi to mineral dust particles emitted from desert areas in North Africa and Asia
[Hoose and Möhler, 2012; Murray et al., 2012]. Laboratory measurements (see references in Hoose and
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Möhler [2012] andMurray et al. [2012]) and field studies [e.g., DeMott et al., 2003; Pratt et al., 2009; Prenni et al.,
2009; Cziczo et al., 2013] showed that different particle species initiate the formation of cloud ice crystals pre-
ferentially at different temperature and humidity conditions, with biological particles often being ice-active at
very high temperatures and mineral dust particles typically becoming active at temperatures below 253 K
[Prenni et al., 2009;Murray et al., 2012]. In field studies it was observed that very ice-active biological particles
in clouds may be cotransported with mineral dust particles [Pratt et al., 2009; Hallar et al., 2011; Creamean
et al., 2013]. These biological particles may cause freezing just below 273 K even in primarily dust-dominated
clouds. A recent study confirmed that ice-nucleating proteins from soil fungi can adsorb to clay surfaces with-
out compromising their ice nucleation efficiency [O’Sullivan et al., 2016].

Agricultural areas in arid regions particularly contribute to dust plumes enriched in biological material. Even
though atmospheric dust concentrations are largely dominated by emissions from desert areas, widespread
intensification of land use has led to increasing emissions from agricultural areas [Ginoux et al., 2012].
However, estimates regarding the contribution of agricultural areas to the global dust burden are not very
well confined and range from less than 10% [Tegen et al., 2004] to 20–50% [Funk and Reuter, 2006; Forster
et al., 2007; Ginoux et al., 2012]. Nevertheless, due to the high mass fraction of presumably ice-active biologi-
cal material accompanying agricultural soil dusts, even a minor contribution of soil dust sources to the total
atmospheric dust burden may have a significant impact on the abundance of atmospheric particles nucleat-
ing ice in mixed-phase clouds [Conen et al., 2011; O’Sullivan et al., 2014]. In addition, atmospherically trans-
ported agricultural soil dust particles carry not only primary biological particles but also organic matter
(OM) in various forms, such as free organic matter (e.g., leaf debris), organo-mineral complexes, and second-
ary organic compounds [Ellerbrock et al., 2005; Kögel-Knabner et al., 2008; Conen et al., 2011; O’Sullivan et al.,
2014; Conen et al., 2016].

Several laboratory studies have confirmed that soil dusts may include much more efficient INPs than desert
dusts and clay minerals [Isono and Ikebe, 1960; Fornea et al., 2009; Conen et al., 2011; O’Sullivan et al., 2014;
Tobo et al., 2014]. Therefore, soil dusts may initiate the formation of ice in droplet and mixed-phase clouds.
Primary biological particles have been suspected to cause the enhanced ice nucleation capabilities of these
soil particles [Schnell and Vali, 1972; Conen et al., 2011; O’Sullivan et al., 2014]. However, the ice nucleation
active components of soil dusts have not been identified directly, leaving the role of soil organic matter
(SOM) unclear [Isono and Ikebe, 1960; Fornea et al., 2009; Conen et al., 2011; O’Sullivan et al., 2014].

The main focus of this work is the detailed investigation of the ice nucleation properties of four agricultural
soil dust samples which was performed at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere)
cloud chamber. Additionally, the soil dust samples were characterized with respect to SOM composition,
since organic components were suspected to contribute significantly to the observed ice nucleation efficien-
cies. The chemical composition and the properties of the OM were investigated by mass spectrometry, UV
light-induced fluorescence, and infrared spectroscopy. Microbial colonization of soil dust was studied by cul-
tivation of microorganisms and culture-independent estimation of the microbial abundance.

The number of biologically active particles was inferred from single particle mass spectrometry and fluores-
cence measurements. Additionally, DNA analyses provided information regarding the number of species and
indications whether fungi or bacteria were more ubiquitous. The cultivation of filter samples with soil dust
particles provided information on the viability of soil organisms. Since soil dust particles carry not only
primary microorganism but also OM in various forms (e.g., organo-mineral complexes and coatings), we also
investigated the chemical composition of SOM with Fourier transform infrared (FTIR) measurements.

All these methods are described in section 2. The results from the ice nucleation studies are presented in
section 3 alongside with the chemical and microbiological analyses. Additionally, the ice nucleation efficien-
cies observed for the soil dusts were compared to results for desert dusts which are ubiquitous in the atmo-
sphere but contain far less OM.

2. Methods
2.1. Sample Collection and Preparation

The soil samples investigated in this study are from four different regions of the world where land use
changes have increased the problem of dust emissions [Tegen and Fung, 1995]. The samples were collected
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in Southern Germany near Karlsruhe (sample name: KS), Northern Germany (GS), Mongolia (MS), and
Argentina (AS). An overview of the samples is shown in Table 1.

The Chinese and Argentinian samples are from temperate grasslands (Xilingele steppe, Pampa), which are
characterized by their vulnerability to wind erosion and large mass fractions of organic compounds
[Shinoda et al., 2011]. The conversion of former pastures into arable land to grow corn or soybeans has caused
huge sand and dust storms in Argentina, blowing soil material into the Atlantic Ocean. Dust particles of the
Province Buenos Aires could even be detected in ice probes of East Antarctica [Gaiero et al., 2004]. In China,
overgrazing has increased wind erosion of steppe soils [Yan et al., 2005]. The sample from Northern Germany
represents a typical sandy soil which is also prone to wind erosion processes [Funk et al., 2004]. A further dust
emission process in highly technologized agriculture is tillage, which affects all soils and amounts to the same
magnitude as wind erosion. The sample from Southern Germany can be seen as an example for this
releasing process.

All samples are taken from the topsoil (A horizon), in which decomposed OM is mixed with mineral compo-
nents. It is also the zone with the highest microbial activity. The soil samples were air dried and stored in plas-
tic bags. The samples were sieved to the particle fraction with diameters smaller than 63μm.

At the same site where the AS sample was collected from the soil matrix, an additional sample was derived
from dust that was trapped in 3.3m height during a dust storm (AS_wind). This sample was not sieved.

A part of the AS sample (from the soil matrix) was exposed to heat (AS_heat: 383 K, 1 h). The treatment was
intended to deteriorate proteinaceous structures such as the ice-active proteins associated with bacteria or
fungi [Szyrmer and Zawadzki, 1997].

2.2. SEM Images of Single Particles

Images of single and agglomerated dust particles were gained from SEM (scanning electronmicroscope) ana-
lyses. Small amounts of dust from the bulk samples were placed on stubs, sputtered with gold-palladium, and
investigated with a SEM (JEOL JSM6060 LV on SEI-mode).

2.3. Mass Fraction of Soil Organic Carbon

The mass fraction of soil organic carbon (SOC) was determined in a separate step (German Industry Standard
ISO 10694, 1996). Organic and inorganic carbon compounds were analyzed with a LECO RC-612 multiphase
carbon analyzer, which is able to differentiate between active, stable, and inorganic compounds of carbon by
oxidation at different temperatures (300–350°C, 420–550°C, and> 1000°C) and relies on nondisperse infrared
detection of CO2 during dry combustion.

2.4. Analysis of OM Composition

In addition to quantifying the total SOM content, several methods were employed to better characterize the
composition of OM for three samples, namely, MS, GS, and AS. The KS sample was only investigated with
mass spectrometry due to the limited sample amount. SOM was intensively investigated in this study
because its components were suspected to be the key factor for defining the ice nucleation properties of
agricultural soil dusts.
2.4.1. Fourier Transform Infrared Spectroscopy
FTIR spectroscopy was employed to draw qualitative comparisons regarding the clay mineral content as well
as the hydrophobicity of OM. For the FTIR measurements, 1mg of each dust sample was mixed with 99mg of
potassium bromide (Merck, Darmstadt) and finely ground in an agate mortar. The mixtures were dried over

Table 1. Overview of Soil Samples Used for Ice Nucleation Experiments

Germany
Brandenburg

(GS)

Germany
Baden-Württemberg

(KS)

Argentina
La Pampa

(AS)

China
Inner Mongolia

(MS)

Geological origin Fluvial deposits Fluvial deposits Aeolian deposits Aeolian deposits
Land use Arable land Arable land Arable land Pasture
Soil texture Sand/loamy sand na Sandy loam Loam
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silica gel, and FTIR spectra were measured by using a FTS 135 spectrometer (BIO-RAD, Massachusetts, USA) at
a resolution of Δeν=1 cm�1 in transmittance mode.

In the FTIR spectra, the signal intensities of absorption bands specific to OMwere analyzed. The height values
of C-H stretch vibrations of alkyl groups at eν = 2969 cm�1, eν = 2928 cm�1 (asymmetric stretching), and eν
=2859 cm�1 (symmetric stretching) were measured as the vertical distance from a local “baseline” plotted
between tangential points, added, and denoted as C-H bands [Ellerbrock et al., 2005]. The absorption inten-
sities of C=O double bonds were measured at eν =1710 cm�1 (ketones, carboxylic acids, or amides)
[MacCarthy and Rice, 1985; Celi et al., 1997] and at eν =1627 cm�1 and eν = 1611 cm�1 (carboxylate anions
and aromatic groups) [Gottwald and Wachter, 1997]. The C-H bands can be characterized as hydrophobic
[Capriel et al., 1995], and the C=O bands show hydrophilic behavior [Morrison and Boyd, 1986]. The ratio
between C-H bands and C=O bands [Ellerbrock et al., 2005] was used to characterize the potential wettability
of the dust samples.

Clay-specific absorption was analyzed by measuring the absorption bands of O-H stretch vibrations of hydro-
xyl groups at eν =3619 cm�1 and of the Si-O-Al stretching at eν =690 cm�1 [Van der Marel and Beutelspacher,
1976; Madejova and Komadel, 2001].
2.4.2. Wideband Integrated Bioaerosol Sensor
During this study, the Wideband Integrated Bioaerosol Sensor (WIBS4—prototype designed and manufac-
tured by the University of Hertfordshire) was used to investigate the occurrence of protein structures and
the metabolic activity of organisms attached to soil particles, by sampling single particle fluorescence data
for the different soil dust samples [Kaye et al., 2005; Foot et al., 2008; Toprak and Schnaiter, 2013]. WIBS4
has two filtered xenon lamps which excite tryptophan (280 nm) and nicotinamide adenine dinucleotide
(NADH, 370 nm), respectively. NADH can be taken as indication for metabolic activity, whereas tryptophan
is a part of protein structures but not necessarily associated with metabolic activity. Single particles are illu-
minated with UV light, and the resulting intrinsic fluorescence emitted by the particles is recorded in three
fluorescence detection bands. These fluorescence detection bands are FL1: 310–400 nm (following the
280 nm excitation), FL2: 420–650 nm (following the 280 nm excitation), and FL3: 420–650 nm (following the
370 nm excitation). These ultraviolet light-induced fluorescence signals are used for the discrimination of bio-
logical from nonbiological particles.

Note that some mineral dusts such as Arizona Test Dust (ATD) fluoresce weakly between 300 nm and 420 nm
after excitation with UV light [Pöhlker et al., 2011]. Therefore, the background fluorescence caused by the
mineral components of the soil dust particles was roughly estimated by investigating the fluorescence sig-
nals observed for ATD. The measurements were performed under controlled laboratory conditions in the
aerosol preparation chamber next to the AIDA cloud chamber.
2.4.3. Mass Spectrometer
An aerosol time-of-flight mass spectrometer (ATOFMS, TSI Mode9l 3800, TSI Inc., St. Paul, MN, USA) was
used to obtain information on the presence of biological material, internally or externally mixed with the
dust aerosol. The ATOFMS [Gard et al., 1997] determines the aerodynamic size and chemical composition
of single particles in near real time. It uses an aerodynamic sizing technique to measure particle size and
time-of-flight mass spectrometry to determine the chemical composition of particles. Particles in the size
range of approximately 200 nm to 3μm are drawn into the instrument from ambient air, sized, and due
to the bipolar design of the mass spectrometer positive and negative ion spectra are acquired from each
individual particle simultaneously. The ATOFMS deploys a 266 nm Nd:YAG laser desorption/ionization
technique that allows the analysis of refractory material such as elemental carbon and mineral
dust constituents.

For the identification of biological material, tracer ions like calcium, sodium, potassium, organic fragments,
nitrate (a combination of both is often reflected in peaks at 26CN� and 42CNO�), and phosphate can be used.
However, as many of these elements are also present in mineral dusts [Gallavardin et al., 2008] a clear identi-
fication of biological material in soil dust is highly challenging using this technique [Pratt et al., 2009; Pratt and
Prather, 2010; Cahill et al., 2012; Cziczo et al., 2013]. In this study, we used a rather simple screening for poten-
tially biological material by querying the obtained single particle mass spectra of each soil sample (a) for the
biomarkers 26CN�, 42CNO�, and 79PO3

� in absence of the dust markers aluminum 43AlO� and silicon 76SiO3
�

(indication for externally mixed particles) and (b) for the biomarkers in the presence of the dust markers
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(indication for internally mixed particles) using the TSI software MS-Analyze. The results presented depict the
percentage of particles that contained the above mentioned combination of tracers.

As already noted, the identification of biological material in atmospheric aerosol particles using this method
is difficult due to the potential presence of the listed biomarkers in nonbiological particles. This problem
especially affects the ATOFMS analysis of soil dust since an overlap in ion traces resulting from dust and bio-
logical material is given. Also, ATOFMS reference spectra from soil dusts are limited. Therefore, the mass spec-
trometric results presented herein have to be interpreted with caution. A more detailed investigation of
additional soil dust samples and different analytical approaches will be subject of a separate manuscript
in preparation.

2.5. Characterization of Microbial Colonization
2.5.1. Analysis of Culturable Heterotrophic Bacteria
Qualitative comparisons regarding the numbers of viable microorganisms (e.g., bacteria) can be drawn from
samples cultivated on R2A agar. From the AIDA cloud chamber, filter samples were drawn for approximately
20min with a sample flow of 5 L/min (measured at standard conditions). For the experiments included in this
study, the aerosol concentrations during sampling did not vary by more than a factor of 2 which makes the
number of observed colonies approximately comparable. The filters (Whatman Nuclepore, 0.2μm pore size,
filter 111106) were then placed on standard R2A agar media and incubated for 5 days at 296 K. The filter
housings were autoclaved prior to being connected to the AIDA cloud chamber. Also, the equipment used
during the handling of the filter samples was disinfected. Blank filter samples showed no signs of bacterial
contamination. Note that only one filter sample was drawn during each AIDA expansion run, and thus, these
results can only be taken as a rough estimate for the number of colony-forming microbes in the aerosol.
2.5.2. DNA Extraction and Analysis of the Abundance of Bacteria, Fungi, Actinobacteria, and
Pseudomonas as Determined by Real-Time PCR
The number fraction of fungi and bacteria was investigated in more detail by using DNA analyses. Within bac-
teria, we studied the abundance of the phylum Actinobacteria as well as the important group of
Pseudomonads which are potentially active in ice nucleation. However, it should be noted that this method
was not used to directly identify and analyze ice-nucleating organisms. The advantage of a DNA-based
real-time polymerase chain reaction (PCR) approach is the feasibility of a culture-independent quantification
of the microbial groups with viable but not culturable, dormant and dead cells as well as free DNA being
detected [Willerslev et al., 2004].

Total DNA was extracted from three aliquots (0.1 g) of the dust samples using the NucleoSpin Soil Kit
(Macherey-Nagel, Germany) according to the manufacturer’s instructions. Mechanical cells lysis was achieved
by applying the FastPrep-24 Instrument (40 s at 6.0ms�1) (MP Biomedicals, Germany). Diluted DNA samples
were subjected to real-time PCR using the QuantiTect SYBR Green PCR kit (Qiagen, Germany). Quantification
of the 16S rRNA gene for bacteria, actinobacteria, and the genus Pseudomonas was performed as described
by Becker et al. [2014].

The abundance of fungi was estimated by quantifying the ITS rRNA region [Fierer et al., 2005]. Two indepen-
dent PCR reactions were performed using an ABI Prism 7500 Fast Thermal Cycler (Life Technologies,
Germany). Inhibitory effects of the DNA extracted from dust samples on PCR performance were tested by
quantification of serial dilutions. The copy number of the fungal ITS rRNA region was calibrated with known
amounts of pure-culture fungal spores of Fusarium graminearum.

2.6. AIDA Cloud Chamber Experiments

The ice nucleation properties of four soil dust samples (see Table 1) were investigated at the AIDA cloud
chamber facility (Karlsruhe Institute of Technology, Germany).

The cloud chamber is generally used to simulate atmospheric trajectories of ascending air parcels by expand-
ing moist air within the cloud chamber vessel, starting from a predefined temperature near the expected
freezing conditions and ambient pressure. Mixed-phase and cirrus cloud conditions can be simulated alike,
and the ice nucleation properties of aerosol particles are investigated under atmospherically
relevant conditions.

For each experimental run, temperature and relative humidity over water and over ice are measured simul-
taneously together with the concentrations of droplets and ice crystals.
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The gas temperature within the AIDA cloud chamber vessel is measured by several well-calibrated sensors
with a measurement uncertainty ΔT=�0.1 K. The variability of individual gas temperature sensors with
respect to their overall mean value is typically less than ΔT=�0.3 K [Möhler et al., 2006]. The temperature
at the chamber walls is also measured during expansion experiments but generally does not change much
from the initial temperature at the beginning of an expansion run. The relative humidity values are derived
from tunable diode laser absorption measurements which deliver the water vapor concentration within
the AIDA cloud chamber. The absolute water vapor concentration values are then converted into relative
humidity values by normalizing with the saturation vapor pressure over ice and over water, respectively, as
parameterized by Murphy and Koop [2005]. The relative humidity values are determined within ΔRH=�5%
[Fahey et al., 2014].

The droplet and ice crystal concentrations are derived from measurements with two optical particles coun-
ters (welas, Palas GmbH) which in combination cover a size range from 0.7 to 240μm (referring to liquid water
droplets) [Wagner and Möhler, 2013]. Prior to injection into the AIDA cloud chamber, the dry dust samples are
dispersed by a rotating brush generator (RBG1000, Palas) which is used in combination with cyclone impactor
stages eliminating particles larger than 5μm. The aerosol size distribution of particles in the AIDA chamber is
derived from APS (Aerodynamic Particle Sizer, Model 3321, TSI) and SMPS (Scanning Mobility Particle Sizer,
Model 3071, TSI) measurements. The aerosol number size distribution is then used to calculate the aerosol
surface area concentration for each experiment by using the volume-equivalent sphere diameters [Möhler
et al., 2006]. All experiments which were conducted at the AIDA cloud chamber to investigate the ice nuclea-
tion properties of the four soil samples are listed in Table 2. The experiments are sorted regarding the ice
nucleation mode that was observed with immersion freezing occurring at temperatures above 245 K and
deposition nucleation at lower temperatures and below saturation with respect to water. Table 2 also lists
the temperature at the beginning of each individual expansion experiments and the aerosol size
distribution parameters.

For each experimental run, the ice nucleation efficiency is expressed as the ice nucleation active surface site
(INAS) density ns [m

�2] which is given by

ns ¼ nice=Aaer (1)

where nice[cm
�3] is the observed ice crystal concentration and Aaer [μm

2cm�3] the aerosol surface area con-
centration [Connolly et al., 2009; Hoose and Möhler, 2012; Niemand et al., 2012]. Note that for analyzing the
immersion freezing experiments, the aerosol surface area concentration is typically scaled according to the
ratio of the droplet and aerosol number concentrations in order to account for the fact that particles will only
participate in immersion freezing after having been activated to droplets. We assume that all particles have
been activated to droplets, whereas during the initial phase of an expansion experiment this might lead to an
overestimation of the aerosol surface area. The measurement uncertainty of the INAS density is determined
by the measurement uncertainty of the ice crystal concentration (Δnice/nice≈ 25%) and the aerosol surface
area (ΔAaer/Aaer≈ 25%), yielding Δns/ns≈ 35%.

The INAS density values describe the average ice nucleation efficiency of an aerosol population as a function
of temperature (T[K]) for immersion freezing and, additionally, of the saturation ratio with respect to ice (Sice)
for deposition nucleation. Note that this approach neglects a possible time scale dependence of the ice
nucleation process.

3. Results
3.1. Characteristics of Soil Dust Samples
3.1.1. Microscope Images of Soil Dust Particles From the Bulk Samples and Surface Area Distribution
Within the AIDA Cloud Chamber
Figure 1 depicts SEM images of two different types of dust particles from the MS sample (Figures 1a and 1b)
and from ATD (Figures 1c and 1d). SEM images were taken for bulk samples of both dust types. Note that ATD
(d= 0–3μm) consists of processed desert dust which was milled, sieved, and washed.

The MS sample is characterized by a larger particle heterogeneity than ATD. Although ATD particles tend to
agglomerate to entities larger than 20μm, single particles are much smaller than found in the Mongolian
sample where smaller particles typically adhere to larger particles.
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The observed particle morphologies suggest that the soil dust from Mongolia contains plant debris and
mineralized plant cell structures (phytoliths) in addition to mineral particles. In contrast, ATD almost exclu-
sively consists of mineral particles. For the soil dust, particles of biological origin were often larger than
20μm. Similar phytolith structures and plant debris were found in all soil samples (not shown).

Figure 2 shows a surface area distribution of aerosol sampled from the AIDA cloud chamber. Particles larger
than 5μm are effectively eliminated by using cyclone impactors. Therefore, the aerosol size distribution of

Table 2. Overview of AIDA Cloud Chamber Experiments With Karlsruhe Soil (KS), German Soil (GS), Mongolian Soil (MS), and Argentinian Soil (AS)

Experiment Aerosol
Initial

Temperature (K)
Aerosol Concentration

(cm�3)
Aerosol Surface Area Concentration

(μm2 cm�3)
Median Diameter

(μm)
Ice Nucleation

Mode

INUIT08_04 GS 266 220 423 1.25 Immersion
freezing

IN16_02 KS 264 230 283 0.75 Immersion
freezing

IN16_09 KS 264 232 262 0.78 Immersion
freezing

IN15_56 KS 262 268 719 1.37 Immersion
freezing

INUIT08_03 GS 262 210 372 1.28 Immersion
freezing

INUIT08_05 MS 262 211 387 1.43 Immersion
freezing

INUIT08_02 MS 261 96 221 1.50 Immersion
freezing

IN19_07 AS 259 138 126 0.80 Immersion
freezing

INUIT08_01 MS 258 193 203 1.00 Immersion
freezing

IN19_05 MS 258 95 68 0.74 Immersion
freezing

IN19_06 GS 258 124 152 0.84 Immersion
freezing

IN19_43 AS 254 165 145 0.75 Immersion
freezing

IN19_44 AS_heat 254 132 167 0.84 Immersion
freezing

IN19_46 GS 255 167 170 0.71 Immersion
freezing

INUIT04_40 AS 249 260 192 0.55 Deposition
nucleation

IN19_09 AS 248 144 116 0.69 Deposition
nucleation

INUIT04_32 MS 248 133 355 1.40 Deposition
nucleation

IN19_31 AS_heat 248 224 159 0.69 Deposition
nucleation

IN19_33 GS 248 194 88 0.54 Deposition
nucleation

IN19_11 MS 247 124 107 0.67 Deposition
nucleation

IN19_18 AS_wind 247 121 156 0.86 Deposition
nucleation

IN15_51 KS 242 339 354 0.73 Deposition
nucleation

INUIT04_46 MS 238 112 57 0.51 Deposition
nucleation

INUIT04_48 AS 238 269 198 0.56 Deposition
nucleation

IN15_50 KS 233 295 456 1.24 Deposition
nucleation
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particles within the AIDA chamber can be considered to be representative for long-range transported dust
plumes in the middle and upper troposphere.
3.1.2. FTIR Measurements
The FTIR measurements deliver insights both into the organic and mineral compounds of soil dust samples.
Three soil samples (GS, AS, and MS) were analyzed and compared with ATD.

Table 3 represents the absorption intensities measured with FTIR spectroscopy (relative to an individual base-
line). Additionally, the mass fractions of total SOC are given.

The clay-specific absorption intensities of the soil dusts as inferred from the Si-O-Al band ateν= 690 cm�1 are
by a factor of 2 lower for the MS and AS samples compared to ATD and by a factor of 4 for the GS sample
compared to ATD as well. This result confirms that agricultural soil dust particles contain significant amounts

Figure 1. SEM images showing the morphology of (a, b) MS particles in comparison to (c, d) ATD.

Figure 2. Aerosol surface area distribution for soil dust particles sampled from the AIDA cloud chamber prior to an experi-
mental run (sample: KS).
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of nonmineral components in contrast to ATD particles containing more than 40% clay minerals [Broadley
et al., 2012].

The absorption signal intensities of the aliphatic C-H functional groups (representing hydrophobic OM com-
ponents) are lowest for ATD and the AS sample (Table 3). Even though the ATD sample is expected to hardly
contain any OM, the FTIR spectra of ATD clearly showed small C-H and C=O absorption bands.

The dusts from Northern Germany and Mongolia were characterized by C-H absorption signals which were
higher by a factor of 2–3 compared to the AS sample. This observation can be taken as an indication for
the higher OM content of these two samples. Further confirmation of this trend is provided bymeasurements
of the total organic carbon content, which is lowest for the AS sample. The absorption observed at the C=O
bands (related to the fraction of hydrophilic OM) was similar among all dusts. The GS sample had the highest
C-H/C=O ratio which suggests the lowest potential wettability of the OM among the measured samples.
3.1.3. WIBS4 Measurements
In this study, the fluorescence of ATD particles was used as a proxy for the cross sensitivity of the WIBS instru-
ment to signals caused by nonbiological components of the soil dust samples. Approximately 1% of all ATD
particles showed fluorescence despite presumably negligible contributions by biological particles adhering
to the dust. Therefore, 1% of the total number of particles was attributed to this cross sensitivity and conse-
quently subtracted from the number of fluorescing particles (NF1, NF2, and NF3). Subscripts refer to the three
fluorescence detection channels with FL1: 310–400 nm (following the 280 nm excitation), FL2: 420–650 nm
(following the 280 nm excitation), and FL3: 420–650 nm (following the 370 nm excitation). It should be noted
that this cross sensitivity is only a very rough estimate and needs to be verified in further studies.

After characterization of the cross sensitivity of the WIBS4 instrument, the fractions of particles with fluores-
cence signatures indicating the presence of primary biological particles were determined for three samples
(AS, GS, and MS).

Table 4 shows particle fractions of fluorescing particles as detected by the three different WIBS4 channels.
Note that the WIBS4 detects particles with optical sizes between 0.5 and 16μm [Toprak and Schnaiter,
2013]. The fraction of particles containing tryptophan (NF1/NT) is highest for the sample from Mongolia
(9%), whereas this fraction is similar for the GS sample (≈3%) and the AS sample (≈5%). The fraction of par-
ticles with metabolic activity (NF3/NT) is below the detection limits for GS and AS. Although further investiga-
tions should be conducted, the ratio NF3/NT for the MS sample indicates a higher number of viable organisms
than for the other soil samples. Note that the fluorescence signals measured for the second channel (NF2)
indicate a similar trend as the fraction of particles containing tryptophan.

Table 3. Absorption Band Intensities of Clay Mineral-Specific OH Groups, Aliphatic C-H Groups, and Carbonylic/Carboxylic C=O Groups, As Well As Water
Repellency (C-H/C=O Ratio) of OMa

Measured Variable

Germany
Brandenburg

(GS)

Argentina
La Pampa

(AS)

China
Inner Mongolia

(MS) ATD

Mineral components Clay mineral-specific absorption (a.u.) 0.052 0.081 0.095 0.190
Organic matter Total organic carbon (Mass %) 2.89 1.45 2.49 n.a.

Summed C-H groups of OM (a.u.) 0.0210� 0.0020 0.0060� 0.0001 0.0140� 0.0003 0.0080� 0.0010
Summed C=O groups of OM (a.u.) 0.22� 0.07 0.19� 0.01 0.23� 0.02 0.23� 0.01

C-H/C=O ratio 0.095� 0.025 0.033� 0.002 0.062� 0.006 0.038� 0.002

aDerived from FTIR spectroscopy measurements of GS, AS, and MS soil dust samples compared to the properties of ATD.

Table 4. Particle Fraction of Biologically Active Particles (%)a

NF1/NT NF2/NT NF3/NT

GS 3.0� 1.0 1.0� 1.0 -
AS 5.0� 1.0 2.0� 2.0 -
MS 9.0� 1.0 3.0� 1.0 1.0� 0.1
AS_heat 2.5� 0.3 - -

aNF1 and NF2 refer to the number of particles containing tryptophan, whereas NF3 denotes the number of particles
containing NADH; NT is the number of detected particles.
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For the Argentinian Soil samples which were heated, the contribution by fluorescing biological particles was
significantly reduced to less than half compared to the untreated samples. For the treated dust, reliable fluor-
escence signals could only be detected with the first channel (F1) of the WIBS4 instrument.

In conclusion, the WIBS4 measurements indicate that the MS sample contains significantly more surface pro-
tein structures than the two other samples. Additionally, the heat treatment led to a significant deterioration
of these protein structures.
3.1.4. Mass Spectrometer
The percentage of particles (aerodynamic diameter <3μm) with biological signatures was also determined
from single particle mass spectrometry. The presence of biological particles was inferred from tracer ions
(“biomarkers”). As a reference, ATD representing “pure” dust was investigated with a similar analytical
approach. The mass spectral analysis of ATD particles revealed about 1% of particles with only biomarkers
(externally mixed) and 32% with both biological and mineralogical signatures (internally mixed particles).
The biomarkers indicate the presence of OM, not necessarily being restricted only to biological particles such
as bacteria or fungi.

The soil samples contained at least 5% particles with only biomarkers and 24% internally mixed ones. In more
detail, the GS and AS sample analysis revealed 12% resp. 5% in the first case, whereas the sample from
Karlsruhe and the MS sample were characterized by similar fractions of particles containing organic markers
(17%). Comparing the internally mixed fractions of the KS sample, MS, GS, and AS contained 67%, 45%, 32%,
and 24%, respectively.
3.1.5. Quantification of Bacteria and Fungi in the Soil Dust Samples by PCR Analysis
The abundance of total bacteria ranged from 1 · 109 to 2 · 109 16S rRNA gene copies per gram soil dust. The GS
and AS samples contained slightly fewer bacterial cells than the MS sample (Table 5). A large fraction of the
detected bacteria belonged to the phylum Actinobacteria (between 60 and 90%), whereas bacteria belong-
ing to the genus Pseudomonas were much less abundant by several orders of magnitudes. Fungi were most
abundant in the GS sample but were underrepresented compared to bacteria in all three samples based on
the copy numbers of the ribosomal operons. None of the microbial groups were detected in ATD.
3.1.6. Abundance of Culturable Heterotrophic Bacteria
Figure 3 shows filter samples which were taken from the AIDA cloud chamber and then incubated on
R2A agar.

MS (Figure 3a) particles contained least culturable cells. Only very few (~5) colonies grew after incubation. In
contrast, the GS sample showed more than 100 (Figure 3b) and the Argentinian Soil sample even more than
250 colony-forming units with varying morphological properties (Figure 3c). The aerosol number concentra-
tions within the AIDA cloud chamber were comparable during all three experiments. Thus, the number of
microorganisms which favored the selected growth conditions was highest for the Argentinian Soil sample.
The fraction of particles containing culturable bacteria was estimated from the number of colony-forming
units (CFUs), the sampling time of roughly 20min at a flow of 5 L/min, and the aerosol number concentration
within the AIDA chamber. For all three samples, this fraction was below 1‰.

Treating the Argentinian Soil sample with heat resulted in a significant reduction in the number of microor-
ganisms that are able to grow on R2A agar (Figure 3d). For the heat-treated dust sample only ~25 CFUs
were found.

Table 5. Abundance of Microbial Groups as Determined by the Quantification of the 16S rRNA Gene as Well as the
Fungal ITS Regiona

Germany
Brandenburg

(GS)

Argentina
La Pampa

(AS)

China
Inner Mongolia

(MS)

Bacteria (1.2� 0.3) · 109 (1.4� 0.2) · 109 (2.4� 0.2) · 109

Actinobacteria (8.2� 1.5) · 108 (9.1� 1.0) · 108 (2.3� 0.2) · 109

Pseudonomas (2.9� 0.9) · 106 (1.5� 0.6) · 105 (2.1� 1.6) · 105

Fungi (4.1� 1.0) · 107 (2.6� 0.5) · 106 (1.9� 0.2) · 106

aMean values and standard deviation are given (copy number of the 16S rRNA gene or number of fungal spores
(g�1soil dust)).
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3.1.7. Summary
Table 6 provides a summary of all measurement results regarding the abundance of biologically active par-
ticles. The AS dust was identified as the sample with the lowest number of biologically active particles.
Between GS and MS which were ranked similar, the sample from Mongolia most likely contained the highest
number of biologically active particles. The number of culturable bacteria did not correlate with the total
number of biologically active particles. The AS sample contained the highest number of culturable bacteria
among the three samples.

3.2. Ice Nucleation Efficiency of Soil Dust Samples

The ice nucleation efficiencies of the four soil dust samples (see Table 1) were determined from AIDA cloud
chamber experiments. Additionally, the impact of heat (383 K) on the ice nucleation efficiencies was

Table 6. Summary of Results for the Abundance of Biologically Active Particles: Abundance Indicated as Low (+) to
High (+++)

Germany
Brandenburg

(GS)

Argentina
La Pampa

(AS)

China
Inner Mongolia

(MS) Measured Indicator

Total organic carbon ++ + ++ Mass fraction of total
organic carbon

FTIR ++ + ++ (Hydrophobic) OM
WIBS4 + + ++ Protein structures
ATOFMS ++ + +++ Particles with biomarkers
PCR analysis Number of cells and cell

fragmentsBacteria + + ++
Fungi ++ + +

Cultivation on R2A ++ +++ + Number of viable cells

Figure 3. Filter samples with agricultural soil dust particles (extracted from the AIDA cloud chamber) after cultivation on
R2A agar—number of colony-forming units clearly visible: (a) MS, (b) GS, (c) AS, and (d) AS (heat treated).
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investigated for the Argentinian
Soil dust sample. Ice nucleation
was observed in the immersion
freezing and the deposition
nucleation mode.

Figure 4 shows the INAS densities
for the four soil dust samples for
immersion freezing. Additionally,
the INAS density values observed
for heat-treated Argentinian Soil
dust are shown. The INAS density
values are represented in relation
to the temperature Tgas[K] in the
AIDA cloud chamber.

The ice nucleation properties were
observed over a temperature
range between 247 and 262 K. For
the KS sample, only experimental
runs at temperatures between 257

and 261 K were conducted. Especially, the experimental data for the AS sample demonstrate that ice nuclea-
tion properties of each agricultural soil dust in this study are variable within 1 order of magnitude.

Between 250 and 255 K, the INAS densities of AS, MS, and GS are remarkably similar. Based on this trend, an
average INAS density of the four soil samples can be approximated by a temperature (T in [K])-dependent
function which is given by

ns Tð Þ ¼ exp 110:266� 0:350·Tð Þ m�2� �
(2)

for temperatures between 247 and 262 K.

For comparison, the average INAS density values for desert dusts [Niemand et al., 2012] and several other soil
dusts [O’Sullivan et al., 2014; Tobo et al., 2014] are represented in Figure 4. The investigated soil dust samples
are on average more ice active than desert dusts which are presumed to contain fewer primary biological
particles, such as fungi, bacteria, and plant debris, and also less OM. Close to 246 K, however, the difference
in the ice nucleation efficiencies between soil samples and desert dusts gradually becomes smaller.
Therefore, the soil-specific components seem to be especially relevant for immersion freezing at higher
temperatures. The heat treatment targeting biological ice nucleation components did not affect the ice
nucleation properties of the AS sample in the temperature range between 247 and 251 K.

In comparison to the soil dusts that were investigated in the study by O’Sullivan et al. [2014], the samples
investigated in this study were more ice active, especially at temperatures above 252 K. Tobo et al. [2014]
observed ice nucleation efficiencies for agricultural dusts from two sites in Wyoming and found similar
INAS densities as O’Sullivan et al. [2014] for their samples.

Ice nucleation was also investigated for deposition mode ice nucleation at temperatures below 248 K and
subsaturation with respect to water (i.e., above saturation with respect to ice, Si> 1).

Figure 5a shows the trajectories and single data points within the T-Si space for which ice nucleation proper-
ties were measured. As for immersion freezing, INAS densities were derived for all four dust samples and the
heat-treated AS sample. Additionally, the ice nucleation properties of wind-blown AS dust were investigated.
All trajectories are located below water saturation which is indicated by a dashed black line.

In Figure 5b, the deposition nucleation mode efficiencies for all experiments conducted in this study are
represented as a function of saturation with respect to ice (Si). As deposition nucleation also depends on
the ambient temperature, in Figure 5b the temperatures at the beginning of each experimental run are also
indicated. For runs with starting temperatures between 243 and 248 K, lower INAS density values were
observed than for experiments starting temperatures below 241 K, with INAS density values ranging between

Figure 4. Results for immersion freezing initiated by agricultural soil dust
particles—the ice nucleation efficiencies are expressed as INAS densities in
relation to temperature T.
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109 and 1011m�2. Figure 5b shows
that the INAS density values group
according to the starting tempera-
ture. Within these temperature
groups, the observed trend is simi-
lar as for immersion freezing: the
INAS density values for GS, AS,
and MS vary within 1 order of mag-
nitude, with already considerable
variability observed for each soil
dust individually. Similarly as for
immersion freezing caused by the
AS sample, no impact of heat treat-
ment can be inferred for deposi-
tion nucleation observed for this
specific sample. The AS sample
which was collected by trapping
wind-blown dust activates within
the range of relative humidities
observed for the top soil sample.

In Figure 5c, INAS density values
are related to a function of tem-
perature (T) and the saturation
ratio over ice (Si) which are com-
bined into the thermodynamic
function xtherm with

xtherm ¼ � T � 273:15ð Þ
þ Si � 1ð Þ�100 (3)

This function was introduced to
represent the dependence of
deposition nucleation on tempera-
ture and humidity. Equation (3)
serves as a good approximation of
the temperature and humidity
dependence observed for high-
temperature deposition nuclea-
tion, e.g., for ATD [Steinke et al.,
2015]. With this composite repre-
sentation stated in equation (3),
INAS density values can be better
compared among experiments
with different starting tempera-
tures. The xtherm formulation as a
first-order approximation should
be considered as a starting point
for further developing parameteri-
zations, analogously to the INAS
density function for immersion
freezing. A higher-order fit regard-

ing the temperature and humidity dependence may be more realistic but would require more data from
different samples and in a wider range of temperature and relative humidity.

Figure 5. Results for deposition nucleation initiated by agricultural soil dust
particles—trajectories of expansion runs shown in (a) and ice nucleation
efficiencies expressed as INAS densities in relation to (b) Sice and to the
thermodynamic function (c) xtherm.
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In addition to the INAS density values from Figure 5b, the ice nucleation efficiency observed for ATD is also
depicted in Figure 5c [Steinke et al., 2015]. ATD is only slightly more efficient than the soil dusts, considering
the large variability of observed INAS density values.

As for the immersion freezing experiments, the INAS density for deposition nucleation initiated by soil dusts
can be approximated by a function depending on the thermodynamic function xtherm with

ns xthermð Þ ¼ 5:224�107·exp 0:148·xthermð Þ m�2� �
(4)

The relation stated in equation (4) is valid for temperatures between 233 and 246 K and relative humidity over
ice varying between 100 and 125%. The measurement uncertainties are given by ΔT=�0.3 K, ΔRHice up to
5% (i.e., Δxtherm≈ 5), and Δns/ns≈ 35% [Möhler et al., 2008; Fahey et al., 2014; Steinke et al., 2015].

4. Discussion

For a temperature range between 233 and 262 K, the immersion and depositionmode ice nucleation efficien-
cies of the four soil dust samples investigated in this study were described by average ice-active surface site
density relations (i.e., exponential functions).

The soil dust samples are more ice active than desert dusts in the immersion freezing mode at temperatures
above 246 K. In the deposition nucleation mode, initial comparisons showed that agricultural soil dusts
are slightly more ice active than ATD for temperatures between 233 and 246 K and humidities below
RHice = 125%.

In the following paragraphs, we will focus the discussion on immersion freezing studies with agricultural soil
dusts. Our findings regarding the enhanced ice nucleation properties agree conceptually with a study by
Conen et al. [2011] on the freezing properties of suspensions containing soil dusts from Western Mongolia,
Southern Germany, Hungary, or Yakutia. These soil dust samples showed higher or at least similar mass-
related site density values than montmorillonite for temperatures between 258 and 263 K.

In contrast to our results, three out of four soil dust samples investigated by O’Sullivan et al. [2014] showed
INAS densities similar to desert dusts investigated by Niemand et al. [2012], even at temperatures above
255 K. Also, the study by Tobo et al. [2014] found INAS densities for two agricultural dust samples from
Wyoming which are similar to desert dusts.

Note, however, that O’Sullivan et al. [2014] estimated the relevant aerosol surface area from diffraction mea-
surements, whereas the parameterization describing the freezing efficiency of desert dusts [Niemand et al.,
2012] is based on APS and SMPS measurements. Tobo et al. [2014], in contrast, derived the aerosol surface
area based on assuming spherical particles with a diameter of 600 nm. Systematic differences between the
underlying aerosol surface areas may at least partially explain the lower INAS densities measured by
O’Sullivan et al. [2014]. It should also be considered that two of the previously mentioned studies [Conen
et al., 2011; O’Sullivan et al., 2014] use soil dust suspensions. A study comparing ice nucleation measurements
of illite particles [Hiranuma et al., 2015] revealed differences in observed ice nucleation efficiencies, depend-
ing on the experimental setup and also the particle preparation (i.e., dry dispersion compared to particle sus-
pensions). Additionally, Conen et al. [2011] only present mass-related ice nucleation efficiencies instead of
surface related values. Variations in the particle size distributions might therefore be reflected in an apparent
change of themass-related ice nucleation properties. Above all, without direct intercomparison studies inves-
tigating the ice nucleation properties of one soil sample, it is not possible to discriminate between setup-
related and soil-specific variability.

The results of this study with soil particles showing enhanced ice nucleation properties at high temperatures
also agree with other studies [Schnell and Vali, 1972; Vali, 2008; Fornea et al., 2009]. These observations sug-
gest that the increased ice nucleation efficiency observed for soil dusts may be caused by soil organisms such
as bacteria or fungi [Christner et al., 2008; Després et al., 2012]. Interestingly, Tobo et al. [2014] did not find
phosphorus markers in their samples which they attribute to the absence of microorganisms.

For our samples we found indications for microbiological activity (cf. Table 6). However, primary biological
particles do not always seem to be the determining factor for soil dust ice nucleation, with no consistent
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trend between microbiological activity and ice nucleation efficiency. Also, heat treatment intended to
destroy ice-active proteins associated with biological particles did not affect the ice nucleation efficiency
of the AS sample at around 249 K in the immersion freezing mode and at around 245 K for deposition mode
nucleation. This finding agrees with a study by Hill et al. [2016] which also observed that heat stable ice-
nucleating entities dominated the ice nucleation properties of five soil samples at temperatures below
261 K. Unfortunately, we did not have enough samplematerial to also investigate the effect of heat treatment
at higher ambient temperatures where one might expect a larger contribution of biological material to the
overall ice nucleation efficiency of soil dust samples. Also, we did not look at the impact of exposure to higher
temperatures compared to this study, e.g., heating up to 573 K which was investigated by Tobo et al. [2014].
At temperatures above ~373 K, it is expected that not only proteinaceous structures will be destroyed but
also other soil organic components will be affected.

Garcia et al. [2012] collected airborne particles over agricultural areas and subjected these samples to a heat
treatment at 371 K for 20min to denature proteins and organics. For a temperature range between 251 and
265 K, Garcia et al. [2012] observed a reduction of the ice nucleation efficiencies between a factor of 2 for
atmospheric ice nuclei over grassland and more than 2 orders of magnitude for ice nuclei from nonirrigated
crop fields. Note, however, that the exact composition of these atmospheric samples is not known even
though it can be assumed that there is a large contribution by soil dust particles [Garcia et al., 2012].
Conen et al. [2011] also observed a reduction of the ice nucleation efficiency after heating soil dust samples
to a temperature of 373 K for a duration of 10min. The ice nucleation efficiency was reduced by up to 2 orders
of magnitude over a temperature range between 258 and 264 K. However, this reduction largely depended
on the soil dust type. O’Sullivan et al. [2014] also observed a reduction of the ice nucleation efficiency after
heating soil dust samples to 363 K for 10min. The reduction of the INAS density values varied between dif-
ferent soil dust types. Heat treatment did not affect the ice nucleation efficiency at temperatures below
245 K. Tobo et al. [2014] found a reduction of the ice nucleation efficiency by applying treatments with heat
(573 K) or H2O2. In contrast to the study by O’Sullivan et al. [2014], treated dusts were significantly less ice
active down to temperatures around 237 K [Tobo et al., 2014]. O’Sullivan et al. [2015] put forward initial
evidence for proteinaceous (i.e., heat sensitive) ice nucleation entities being mostly associated with soil dust
particles larger than 2μm.

The comparison with the studies described above suggests that for Argentinian Soil ice nucleation efficiency
at lower temperature is not primarily influenced by ice nucleation active protein structures. The role of SOM
for the ice nucleation properties of agricultural soil dusts is not fully clear, and especially at higher tempera-
tures, further investigation is needed.

Concerning the interpretation of our experimental results for lower temperatures, it should be noted that
some SOM components relevant for ice nucleation caused by agricultural soil dusts may be resistant to phy-
sical treatments (e.g., heat treatment). For example, organic macromolecules such as polysaccharides are
under consideration for causing the high ice nucleation activity of organic compounds at the surface of pol-
len particles [Pummer et al., 2012]. Sugar molecules are also known to be involved in the aggregation of larger
protein clusters which constitute ice nucleation active sites on bacteria [Szyrmer and Zawadzki, 1997].

5. Summary and Conclusions

The goal of this study was to investigate the ice nucleation properties of four soil dust samples and to estab-
lish relations between the different soil dust components and the observed INAS density values.

Three soil dust samples from agricultural areas were analyzed with regard to their SOM properties, resulting
in very distinct differences. The mass fraction of total SOC varied between 1 and 3% among MS (origin: grass-
land), AS, and GS (origin: arable land). The sample fromMongolia contained more microorganisms (fungi and
bacteria) than the samples from Northern Germany and Argentina.

The ice nucleation properties of four soil dust samples from agricultural areas were investigated in the tem-
perature range between 233 and 262 K. The ice nucleation efficiencies were expressed by the aerosol surface
area-related INAS density for all samples. The ice nucleation efficiencies were summarized by common INAS
density functions despite their different physicochemical and microbiological characteristics.
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The INAS densities can be described by a temperature-dependent exponential function with

ns Tð Þ ¼ exp 110:266� 0:350·Tð Þ m�2� �
(5)

parameterizing immersion freezing occurring between 247 and 262 K.

For deposition nucleation, the INAS densities are expressed as an exponential function of the composite vari-
able xtherm(T, Si) with

ns xthermð Þ ¼ 5:224·107·exp 0:148· xthermð Þ m�2� �
(6)

which is a relation only valid at subsaturated conditions with respect to water and for temperatures between
233 and 246 K. The variable xtherm(T, Si) depends on temperature T and saturation over ice Si. The wind-blown
AS sample activated at a similar humidity than the sample derived from the top soil.

All investigated soil dusts were at least slightly more ice active than desert dusts, both in the immersion freez-
ing and the deposition nucleation mode. Note, however, that the variability in ice nucleation properties is
high for agricultural soil dusts. This variability is most likely linked to the complexity of SOM and eventually
also differences in the mineral composition. In our study, primary biological particles did not seem to be
the sole explanation of enhanced ice nucleation of soil dusts at temperatures around 250 K. Further experi-
ments in particular at higher temperatures are needed to further evaluate and quantify the effect of heat
treatment on the ice nucleation efficiency of several different agricultural soil dust types. The overall rele-
vance of OM (e.g., organic coatings and organo-mineral complexes) and biological material for the ice nuclea-
tion efficiency of soil dust particles remained unclear.

Since the contributions of agricultural areas to the global dust burden may be as high as 25% [Ginoux et al.,
2012], soil dust particles can be transported to upper layers of the troposphere where they are able to act
as ice nuclei. The INAS density relations presented in this work can be used as a starting point to estimate
the contribution of soil dust particles to atmospheric ice nuclei concentrations. The INAS density parame-
terization for soil dusts presented in this study can be further improved and extended by measuring the ice
nucleation properties of a larger variety of soil dusts over a wider temperature range. This also means to
include effects such as seasonal variations of the ice nucleation properties due to changes in the composi-
tion of SOM.
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