52 research outputs found

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Degradation of Cdc25A by \u3b2-TrCP during S phase and in response to DNA damage

    Get PDF
    The Cdc25A phosphatase is essential for cell-cycle progression because of its function in dephosphorylating cyclin-dependent kinases. In response to DNA damage or stalled replication, the ATM and ATR protein kinases activate the checkpoint kinases Chk1 and Chk2, which leads to hyperphosphorylation of Cdc25A1\u20133. These events stimulate the ubiquitin-mediated pro- teolysis of Cdc25A1,4,5 and contribute to delaying cell-cycle progression, thereby preventing genomic instability1\u20137. Here we report that b-TrCP is the F-box protein that targets phosphory- lated Cdc25A for degradation by the Skp1/Cul1/F-box protein complex. Downregulation of b-TrCP1 and b-TrCP2 expression by short interfering RNAs causes an accumulation of Cdc25A in cells progressing through S phase and prevents the degradation of Cdc25A induced by ionizing radiation, indicating that b-TrCP may function in the intra-S-phase checkpoint. Consistent with this hypothesis, suppression of b-TrCP expression results in radioresistant DNA synthesis in response to DNA damage\u2014a phenotype indicative of a defect in the intra-S-phase checkpoint that is associated with an inability to regulate Cdc25A properly. Our results show that b-TrCP has a crucial role in mediating the response to DNA damage through Cdc25A degradation

    Sustained Oscillations of NF-κB Produce Distinct Genome Scanning and Gene Expression Profiles

    Get PDF
    NF-κB is a prototypic stress-responsive transcription factor that acts within a complex regulatory network. The signaling dynamics of endogenous NF-κB in single cells remain poorly understood. To examine real time dynamics in living cells, we monitored NF-κB activities at multiple timescales using GFP-p65 knock-in mouse embryonic fibroblasts. Oscillations in NF-κB were sustained in most cells, with several cycles of transient nuclear translocation after TNF-α stimulation. Mathematical modeling suggests that NF-κB oscillations are selected over other non-oscillatory dynamics by fine-tuning the relative strengths of feedback loops like IκBα. The ability of NF-κB to scan and interact with the genome in vivo remained remarkably constant from early to late cycles, as observed by fluorescence recovery after photobleaching (FRAP). Perturbation of long-term NF-κB oscillations interfered with its short-term interaction with chromatin and balanced transcriptional output, as predicted by the mathematical model. We propose that negative feedback loops do not simply terminate signaling, but rather promote oscillations of NF-κB in the nucleus, and these oscillations are functionally advantageous

    APOE Genotype-Function Relationship: Evidence of −491 A/T Promoter Polymorphism Modifying Transcription Control but Not Type 2 Diabetes Risk

    Get PDF
    BACKGROUND: The apolipoprotein E gene (APOE) coding polymorphism modifies the risks of Alzheimer's disease, type 2 diabetes, and coronary heart disease. Aside from the coding variants, single nucleotide polymorphism (SNP) of the APOE promoter has also been shown to modify the risk of Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genotype-function relationship of APOE promoter polymorphism at molecular level and at physiological level: i.e., in transcription control of the gene and in the risk of type 2 diabetes. In molecular studies, the effect of the APOE -491A/T (rs449647) polymorphism on gene transcription was accessed by dual-luciferase reporter gene assays. The -491 A to T substitution decreased the activity (p<0.05) of the cloned APOE promoter (-1017 to +406). Using the -501 to -481 nucleotide sequence of the APOE promoter as a 'bait' to screen the human brain cDNA library by yeast one-hybrid system yielded ATF4, an endoplasmic reticulum stress response gene, as one of the interacting factors. Electrophoretic-mobility-shift assays (EMSA) and chromatin immuno-precipitation (ChIP) analyses further substantiated the physical interaction between ATF4 and the APOE promoter. Over-expression of ATF4 stimulated APOE expression whereas siRNA against ATF4 suppressed the expression of the gene. However, interaction between APOE promoter and ATF4 was not -491A/T-specific. At physiological level, the genotype-function relationship of APOE promoter polymorphism was studied in type 2 diabetes. In 630 cases and 595 controls, three APOE promoter SNPs -491A/T, -219G/T (rs405509), and +113G/C (rs440446) were genotyped and tested for association with type 2 diabetes in Hong Kong Chinese. No SNP or haplotype association with type 2 diabetes was detected. CONCLUSIONS/SIGNIFICANCE: At molecular level, polymorphism -491A/T and ATF4 elicit independent control of APOE gene expression. At physiological level, no genotype-risk association was detected between the studied APOE promoter SNPs and type 2 diabetes in Hong Kong Chinese

    Trichostatin A enhances acetylation as well as protein stability of ERα through induction of p300 protein

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Introduction Trichostatin A (TSA) is a well-characterized histone deacetylase (HDAC) inhibitor. TSA modifies the balance between HDAC and histone acetyltransferase activities that is important in chromatin remodeling and gene expression. Although several previous studies have demonstrated the role of TSA in regulation of estrogen receptor alpha (ERα), the precise mechanism by which TSA affects ERα activity remains unclear. Methods Transient transfection was performed using the Welfect-EX™Plus procedure. The mRNA expression was determined using RT-PCR. Protein expression and interaction were determined by western blotting and immunoprecipitation. The transfection of siRNAs was performed using the Oligofectamine™ reagent procedure. Results TSA treatment increased acetylation of ERα in a dose-dependent manner. The TSA-induced acetylation of ERα was accompanied by an increased stability of ERα protein. Interestingly, TSA also increased the acetylation and the stability of p300 protein. Overexpression of p300 induced acetylation and stability of ERα by blocking ubiquitination. Knockdown of p300 by RNA interference decreased acetylation as well as the protein level of ERα, indicating that p300 mediated the TSA-induced stabilization of ERα. Conclusions We report that TSA enhanced acetylation as well as the stability of the ERα protein by modulating stability of p300. These results may provide the molecular basis for pharmacological functions of HDAC inhibitors in the treatment of human breast cancer

    A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation

    Get PDF
    TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell proliferation also in the absence of ARF, raising the question of what are the molecular pathways involved. Herein we demonstrate that stable knock-down of TBP-1 in human immortalized fibroblasts increases cell proliferation, migration and resistance to apoptosis induced by serum deprivation. We observe that TBP-1 silencing causes activation of the Akt/PKB kinase and that in turn TBP-1, itself, is a downstream target of Akt/PKB. Moreover, MDM2, a known Akt target, plays a major role in this regulation. Altogether, our data suggest the existence of a negative feedback loop involving Akt/PKB that might act as a sensor to modulate TBP-1 levels in proliferating cells

    Role of Plant-Specific N-Terminal Domain of Maize CK2β1 Subunit in CK2β Functions and Holoenzyme Regulation

    Get PDF
    Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes

    Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death

    Get PDF
    Developing sympathetic neurons depend on nerve growth factor (NGF) for survival and die by apoptosis after NGF withdrawal. This process requires de novo gene expression but only a small number of genes induced by NGF deprivation have been identified so far, either by a candidate gene approach or in mRNA differential display experiments. This is partly because it is difficult to obtain large numbers of sympathetic neurons for in vitro studies. Here, we describe for the first time, how advances in gene microarray technology have allowed us to investigate the expression of all known genes in sympathetic neurons cultured in the presence and absence of NGF

    HIV-1 Vpu Neutralizes the Antiviral Factor Tetherin/BST-2 by Binding It and Directing Its Beta-TrCP2-Dependent Degradation

    Get PDF
    Host cells impose a broad range of obstacles to the replication of retroviruses. Tetherin (also known as CD317, BST-2 or HM1.24) impedes viral release by retaining newly budded HIV-1 virions on the surface of cells. HIV-1 Vpu efficiently counteracts this restriction. Here, we show that HIV-1 Vpu induces the depletion of tetherin from cells. We demonstrate that this phenomenon correlates with the ability of Vpu to counteract the antiviral activity of both overexpressed and interferon-induced endogenous tetherin. In addition, we show that Vpu co-immunoprecipitates with tetherin and β-TrCP in a tri-molecular complex. This interaction leads to Vpu-mediated proteasomal degradation of tetherin in a β-TrCP2-dependent manner. Accordingly, in conditions where Vpu-β-TrCP2-tetherin interplay was not operative, including cells stably knocked down for β-TrCP2 expression or cells expressing a dominant negative form of β-TrCP, the ability of Vpu to antagonize the antiviral activity of tetherin was severely impaired. Nevertheless, tetherin degradation did not account for the totality of Vpu-mediated counteraction against the antiviral factor, as binding of Vpu to tetherin was sufficient for a partial relief of the restriction. Finally, we show that the mechanism used by Vpu to induce tetherin depletion implicates the cellular ER-associated degradation (ERAD) pathway, which mediates the dislocation of ER membrane proteins into the cytosol for subsequent proteasomal degradation. In conclusion, we show that Vpu interacts with tetherin to direct its β-TrCP2-dependent proteasomal degradation, thereby alleviating the blockade to the release of infectious virions. Identification of tetherin binding to Vpu provides a potential novel target for the development of drugs aimed at inhibiting HIV-1 replication

    Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis

    Get PDF
    Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity
    corecore