660 research outputs found

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of −0.5458(2)-0.5458(2) [−0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    ADDRESSING THE NOTION OF SOCIO-CULTURAL CONTINUUM SEEN THROUGH THE CHORAL ART AS IT DEVELOPED THROUGHOUT INDEPENDENCE OF UKRAINE: LITERATURE REVIEW

    Get PDF
    Purpose of the study: The purpose of the present study is to specify the notion of socio-cultural continuum seen through the choral art as it developed throughout independence in Ukraine and to identify its main tendencies as drivers of choral art development. In this regard, the research tasks are to investigate the meaning of the concepts of “continuum”, “socio-cultural continuum,” and to identify the main socio-cultural tendencies that, in our opinion, have the most significant influence on the development of choral art. Methodology: This study used a meta-analysis approach to solve the issues raised in the research. Reference sources, peer-reviewed databases like Education Resources Information Centre (ERIC), Scopus, Arts & Humanities Database, the Choral Scholar (online journal), Google Scholar, together with open-source-published researches and books (published either in Ukrainian or English) were used to obtain the relevant information. Main findings: It was found, that the socio-cultural continuum in Ukraine of the period of independence emerges as a complex hierarchical system of phenomena characterized by an inextricable link between the Spatio-temporal parameters of human beings, society, and culture. Applications of this study: Interpreting this concept in relation to the development of choral art as an imaginary model of a single socio-cultural space-time in Ukraine (region) occurring throughout the independence period in all the continuous hierarchical multiplicity of its phenomena related to the functioning of choral art identified several major trends that, in our opinion, were influenced by the intensity and nature of such development. This period, as a transition period characterized by a change in outlook, the revival of previously forbidden traditions, and the emergence of new socio-cultural trends not only intensified the development but also caused several challenges that Ukrainian society faced. Novelty/Originality of this study: This scientific exploration was an attempt to understand the theoretical essence of this continuum and its tendencies, which in the future will allow knowing more about their positive and negative orientations and ways

    A dynamic explanation for the origin of the western Mediterranean organic-rich layers

    Get PDF
    The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Metabolic Syndrome and Onset of Depressive Symptoms in the Elderly: Findings from the Three-City Study

    Get PDF
    OBJECTIVE-Given the increasing prevalence of both metabolic syndrome (MetS) and depressive symptoms during old age, we aimed to examine prospectively the association between MetS and the onset of depressive symptoms according to different age-groups in a large, general elderly population.RESEARCH DESIGN AND METHODS-This was a prospective cohort study of 4,446 men and women aged 65-91 years who were free of depression or depressive symptoms at baseline (the Three-City Study, France). MetS was defined using the National Cholesterol Education Program Adult Treatment Panel III criteria. New onset of depressive symptoms (the Center for Epidemiologic Studies Depression Scale score >= 16 and use of antidepressant treatment) was assessed at 2- and 4-year follow-ups.RESULTS-After adjusting for a large range of potential confounders, we observed MetS to be associated with 1.73-fold (95% CI 1.02-2.95) odds for new-onset depressive symptoms in the youngest age-group (65-70 years at baseline), independently of cardiovascular diseases. No such association was seen in older age-groups.CONCLUSIONS-Our findings suggest that the link between MetS and depressive symptoms evidenced until now in middle-aged people can be extended to older adults but not to the oldest ones. Additional research is needed to examine if a better management of MetS prevents depressive symptoms in people aged 65-70 years. Diabetes Care 34:904-909, 201

    Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    Full text link
    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.Comment: 11 pages, revte

    Bias in data-driven artificial intelligence systems—An introductory survey

    Get PDF
    Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth. This article is categorized under: Commercial, Legal, and Ethical Issues > Fairness in Data Mining Commercial, Legal, and Ethical Issues > Ethical Considerations Commercial, Legal, and Ethical Issues > Legal Issues
    • 

    corecore